Chemical composition of organic and mineral substances in silt bottom sediments of non-contaminated water bodies

2006 ◽  
Vol 33 (1) ◽  
pp. 64-70 ◽  
Author(s):  
A. M. Nikanorov ◽  
A. G. Stradomskaya
Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 29
Author(s):  
Alexei Konoplev ◽  
Gennady Laptev ◽  
Yasunori Igarashi ◽  
Hrigoryi Derkach ◽  
Valentin Protsak ◽  
...  

Given the importance of understanding long-term dynamics of radionuclides in the environment in general, and major gaps in the knowledge of 137Cs particulate forms in Chernobyl exclusion zone water bodies, three heavily contaminated water bodies (Lakes Glubokoe, Azbuchin, and Chernobyl NPP Cooling Pond) were studied to reconstruct time changes in particulate concentrations of 137Cs and its apparent distribution coefficient Kd, based on 137Cs depth distributions in bottom sediments. Bottom sediment cores collected from deep-water sites of the above water bodies were sliced into 2 cm layers to obtain 137Cs vertical profile. Assuming negligible sediment mixing and allowing for 137Cs strong binding to sediment, each layer of the core was attributed to a specific year of profile formation. Using this method, temporal trends for particulate 137Cs concentrations in the studied water bodies were derived for the first time and they were generally consistent with the semiempirical diffusional model. Based on the back-calculated particulate 137Cs concentrations, and the available long-term monitoring data for dissolved 137Cs, the dynamics of 137Cs solid–liquid distribution were reconstructed. Importantly, just a single sediment core collected from a lake or pond many years after a nuclear accident seems to be sufficient to retrieve long-term dynamics of contamination.


2021 ◽  
Vol 26 (2) ◽  
pp. 3-13
Author(s):  
E. A. Krasavtseva ◽  
◽  
S. S. Sandimirov ◽  

Introduction. This extended study is the first to analyze the chemical composition of the surface waters and bottom sediments of the lakes affected to various extents by Lovozersky Mining and Processing Plant (Revda urban settlement, Murmansk Region) performing mining and processing of rare metal ores. Methods. During the study, we used data obtained in the course of research in 1995–2005 and 2019–2020. Water and bottom sediment samples were analyzed using various methods. The total contents of elements in the bottom sediments were compared with the background values or, in their absence, with the clarke contents of elements in the Earth’s crust. To assess the level of pollution in the Sergevan River receiving wastewater from the plant, the maximum pollution index was calculated. Results. Over the past 35 years, the chemical composition of the surface waters of nearby water bodies underwent minor changes. No significant excess of maximum permissible concentrations for fishery water bodies was found. The comparison of the contents of heavy metals in the bottom sediments collected from Lakes Ilma and Krivoye with the background values revealed contamination of the Lake Ilma with strontium, zinc and manganese. Besides, a multiple excess of the content of rare earth elements (La, Ce, Pr, Nd), Nb and Ta was established in the bottom sediments of Lake Ilma in comparison with that in Lake Krivoye. The analysis of the river water samples taken at different distances upstream and downstream the site of wastewater discharge confirmed the assumption about the pollution of the Sergevan River by wastewater from the plant. Conclusion. The pollution of the water bodies is mainly caused by wastewater discharged from the plant, however, the increased content of rare earth elements in the bottom sediments of Lake Ilma may be due to air transport of particles of loparite ore concentration tailings, drainage from tailing dams, or degradation of underlying rocks.


Author(s):  
N. G. Lyuta

The chemical composition of bottom sediments is an important indicator of the ecological state of both water systems and watershed areas, since contaminated bottom sediments are a potential source of secondary pollution of aquatic systems. The analysis of recent publications shows that great attention has been paid to the chemical composition of bottom sediments, however, as a rule, these studies are of a local nature, that is, they cover very small areas. This often raises the issue of criteria for assessing the ecological and geochemical status of bottom sediments, since a small number of samples does not allow correctly determining the local geochemical background. In addition, generally accepted norms, for example, the maximum allowable concentrations, do not exist for bottom sediments. In these conditions, data on regional geochemical backgrounds of pollutants are needed. The need for the implementation of the Water Framework Directive in Ukraine, which requires the introduction of water management basin-based, necessitates the determination of the geochemical characteristics of bottom sediments within the river basin territories. To study the distribution of heavy metals and determine their regional backgrounds in the bottom sediments, a database of environmental and geochemical information was used in the GIS, one of the blocks of which is information on the content of chemical elements and compounds in the bottom sediments of watercourses and water bodies of Ukraine, and the electronic map of river basins of Ukraine. Based on the analysis in the GIS of information on the chemical composition of the bottom sediments of the rivers of Ukraine (about 8,1 thousand samples), regional geochemical background of lead, zinc, copper, chromium, nickel and cobalt have been determined. The main regularities of distribution of chemical elements in bottom sediments in the territory of Ukraine are established. For the chemical elements in question, a gradual increase in their content in soils from north to south, that is, from the river basins of the Polissya zone to the basins of the Steppe landscape-climatic zone, is consistent with the geochemical features of the soil cover of the catchment areas. The increased background content of chemical elements in bottom sediments often spatially coincides with the spread of soil differences in the catchment areas, which also have a high content of these elements. The maximum background content of most heavy metals in bottom sediments is naturally clearly recorded within the Carpathian-Crimean metallogenic province. Thus, despite the long and intensive technogenic impact on the surface water bodies of Ukraine, it is necessary to note the priority of natural factors in the formation of the chemical composition of bottom sediments, at least for the heavy metals considered above.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Robert Machowski ◽  
Martyna A. Rzetala ◽  
Mariusz Rzetala ◽  
Maksymilian Solarski

Abstract An assessment was carried out of the anthropogenic enrichment of the chemical composition of the bottom sediments of water bodies situated in an area with an urban and industrial character (63.7% of the total area). The endorheic catchments of the water bodies studied are lithologically uniform with sandy formations accounting for more than 90% of the surface area. On the basis of geoaccumulation index values, it was found that the bottom sediments of the water bodies studied were contaminated with the following elements: Cd, Zn, S, As, Pb, Sr, Co, Cr, Cu, Ba, Ni, V, Be, in degrees ranging from moderate to extreme, with lower contamination (or absence of contamination) with the same elements being found in the formations present in the vicinity and in the substrate of the basins of water bodies. It was found that one consequence of the fact that these water bodies are located in urban and industrial areas is that there is anthropogenic enrichment of the chemical composition of bottom sediments with certain basic components (organic matter, Mn, Ca and P compounds) and trace elements: Cd, Zn, Pb, Sb, As, Cu and Co, Br, Ni, S, Be, Cs, Sr, V, Cr, Sc, Ba, U, Ce, Eu and Th, with virtually no enrichment of sediments with the other basic and trace components analysed (La, Rb, K2O, Nd, Sm, Na2O, Hf, SiO2, Zr).


2009 ◽  
Vol 45 (2) ◽  
pp. 85-105 ◽  
Author(s):  
P. N. Linnik ◽  
O. V. Timchenko ◽  
A. V. Zubko ◽  
I. B. Zubenko ◽  
L. A. Malinovskaya

2016 ◽  
Author(s):  
Alexander M. Panichev ◽  
Vladimir K. Popov ◽  
Igor Y. Chekryzhov ◽  
Ivan V Seryodkin ◽  
Alexander A. Sergievich ◽  
...  

Abstract. In this paper, the reasons for geophagy (the eating of rocks by wild herbivores) in two regions of the Eastern Sikhote-Alin volcanic belt are considered. The mineralogical and chemical features of the consumed rocks, and also the geological conditions of their formation are investigated. A comparative analysis of the mineral and chemical composition of the consumed rocks and the excrement of the animals, almost completely consisting of mineral substances, is carried out. It is established that the consumed rocks are hydrothermally-altered rhyolitic tuffs located in the volcanic calderas and early Cenozoic volcano-tectonic depressions. They consist of 30–80 % from zeolites (mainly clinoptilolites) and smectites, possessing powerful sorption properties. According to the obtained data, the main reason for geophagy may be connected with the animals’ urge to discard excessive and toxic concentrations of certain elements that are widespread in specific habitats and ingested with forage plants.


2017 ◽  
Vol 22 (1) ◽  
pp. 81-103 ◽  
Author(s):  
Nataliya Michailovna Kalinkina ◽  
Natalya Alexandrovna Belkina ◽  
Anastasiya Ivanovna Sidorova ◽  
Nataliya Alekseevna Galibina ◽  
Kseniya Mikhailovna Nikerova

2020 ◽  
Vol 175 ◽  
pp. 02001
Author(s):  
Natalya Yurina ◽  
Denis Yurin ◽  
Irina Astakhova ◽  
Tatyana Shcherbatova ◽  
Igor Shcherbatov

The study of suitability for the use in agriculture of sludge deposits and hydrochemical indices of water bodies of fish-growing enterprise of LLC “Albashi” were carried out. It is an enterprise engaged in breeding and growing pond fish and sturgeon in pools and gardens, crayfish, growing aquapon greens. Fresh water bodies of reservoir type LLC “Albashi” contain a large number of bottom deposits. The layer of sludge deposits on the bottom in places reaches the power of 2-5 meters, and the underground power is difficult. Bottom sediments were taken from a depth of 1.0-1.2 m from the surface. The hydrochemical regime of the studied water bodies fully corresponds to the cultivation of aquaculture objects and hydroponic plants. Sufficient suspended matter in water (8.2 mg/dm3). The complete absence of dichlorodiphenyl trichloroethane, its metabolites and pesticides characterizes the products produced as environmentally safe. Consequently, bottom sediment site under study can be considered suitable for agricultural production.


Sign in / Sign up

Export Citation Format

Share Document