Physically based simulating long-term dynamics of diurnal variations of river runoff and snow water equivalent in the Kolyma River Basin

2015 ◽  
Vol 42 (6) ◽  
pp. 834-841 ◽  
Author(s):  
E. M. Gusev ◽  
O. N. Nasonova ◽  
L. Ya. Dzhogan
2019 ◽  
Vol 46 (4) ◽  
pp. 493-503 ◽  
Author(s):  
E. M. Gusev ◽  
O. N. Nasonova ◽  
E. A. Shurkhno ◽  
L. Ya. Dzhogan ◽  
G. V. Aizel’

2020 ◽  
Author(s):  
Gildas Dayon ◽  
François Besson ◽  
Jean-Michel Soubeyroux ◽  
Chrisitian Viel ◽  
Paola Marson

<p><span>I</span><span>n the </span><span>framework</span><span> of the MEDSCOPE project, a </span><span>forecasting</span><span> chain is developed at Météo-France </span><span>for hydrological long term predictions over </span><span>the Euro-Mediterranean region</span><span>, from one month up to seven months. </span><span>This new prototype </span><span>is based on the Météo-France System 6 global seasonal forecast system</span><span>. </span><span>Atmospheric forecasts are</span> <span>interpolated </span><span>to 5.5 km </span><span>and corrected by</span><span> the statistical method ADAMONT </span><span>using </span><span>the </span><span>UERRA regional </span><span>atmospheric</span><span> reanalysis as reference</span><span>. </span><span>These h</span><span>igh resolution forecast</span><span>s</span><span> driv</span><span>e</span><span> the physically-based model SURFEX coupled to CTRIP </span><span>providing seasonal forecasts of surface variables : river discharges, soil wetness indices, snow water equivalent</span><span>.</span></p><p>A forecast using the climatology (ESP approach) has been produced on the period 1993-2016. It is use to explore the sources of predictability in the different watersheds (Ebro, Po, Rhône). Predictability is mostly coming from the snow pack built during the winter and the soil moisture evolution in spring and summer. A hindcast on the period 1993-2016 is produced to assess the added value of the seasonal forecast compared to the climatology for the end-users in agriculture and energy.</p>


Author(s):  
Sally Rose Anderson ◽  
Amanda Bowen ◽  
Glenn Tootle ◽  
Abdoul Oubeidillah

Reconstructions of hydrologic variables are commonly created using tree-ring chronologies (TRCs) to generate information about historic climate and potential future variability. This study used TRCs to reconstruct annual streamflow, April 1st Snow Water Equivalent (SWE), and soil moisture in the North Platte River Basin (NPRB). Stepwise linear regression was performed to determine which of the 55 moisture sensitive TRCs were the best predictors of hydrologic variation. The regressions explained 63% of the variability in streamflow, 55% of the variability in SWE, and 66% of the variability in soil moisture. This study then maximized the overlapping period of records which resulted in a decrease in the percent of variability explained but indicated that the regression models were stable for long reconstruction periods. This study successfully reconstructed all three hydrologic variables for NPRB to 1438 or earlier. Temporal wet and dry periods for streamflow and SWE were closely aligned while soil moisture did not follow similar temporal patterns. This was likely due to a natural “lag” between soil moisture and streamflow / SWE given soil moisture tends to retain antecedent signals. The availability of reconstructed hydrologic data in NPRB allows for a better understanding of the long-term hydrologic variability in the region.


2020 ◽  
Vol 163 ◽  
pp. 01006
Author(s):  
Andrey Kalugin ◽  
Liudmila Lebedeva

The study aims at the analysis of the long-term hydrometeorological data and hydrological modelling at the small permafrost Shestakovka river basin. The basin has postponed reaction to precipitation on different time scales from days to years. Annual, seasonal and monthly streamflow has higher correlation with precipitation sum for corresponding and antecedent time intervals than for the corresponding period only. It suggests importance of water storage and slow water release in the runoff generation that could be related to the suprapermafrost talik aquifers found in the river basin. A spatially distributed physically-based ECOMAG model was applied to the Shestakovka River basin. Evaluation of the simulated river runoff, soil moisture and snow water equivalent was carried out over a period 1990-2014. Obtained NSE 0.59 and BIAS 3% could be considered as satisfactory modelling results taking into account high inter annual and seasonal observed streamflow variability under much less variable meteorological conditions. Better understanding and modelling of the complex interactions between permafrost and hydrological processes is important for development of reliable flood forecasts and long-term future projections under changing climate and growing economical interests to cold regions.


Author(s):  
S. R. Fassnacht ◽  
M. Hultstrand

Abstract. The individual measurements from snowcourse stations were digitized for six stations across northern Colorado that had up to 79 years of record (1936 to 2014). These manual measurements are collected at the first of the month from February through May, with additional measurements in January and June. This dataset was used to evaluate the variability in snow depth and snow water equivalent (SWE) across a snowcourse, as well as trends in snowpack patterns across the entire period of record and over two halves of the record (up to 1975 and from 1976). Snowpack variability is correlated to depth and SWE. The snow depth variability is shown to be highly correlated with average April snow depth and day of year. Depth and SWE were found to be significantly decreasing over the entire period of record at two stations, while at another station the significant trends were an increase over the first half of the record and a decrease over the second half. Variability tended to decrease with time, when significant.


2021 ◽  
Vol 11 (18) ◽  
pp. 8365
Author(s):  
Liming Gao ◽  
Lele Zhang ◽  
Yongping Shen ◽  
Yaonan Zhang ◽  
Minghao Ai ◽  
...  

Accurate simulation of snow cover process is of great significance to the study of climate change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface model, and the simulation results were compared with the gridded dataset of snow depth at Chinese meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD), and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we compared the combinations of four parameterizations schemes of Noah-MP model at the Kuwei site. The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation results was much higher than the other three schemes; when STC uses a fully implicit scheme, the error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results of model simulation, it is concluded that the snow depth and snow water equivalent in the north of the basin are higher than those in the south. The average snow depth, snow water equivalent, snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly during the study period, but the end time of snow melting was significantly advanced.


2004 ◽  
Vol 18 (9) ◽  
pp. 1595-1611 ◽  
Author(s):  
N. P. Molotch ◽  
S. R. Fassnacht ◽  
R. C. Bales ◽  
S. R. Helfrich

2021 ◽  
Author(s):  
Hanna Bolbot ◽  
Vasyl Grebin

<p>The current patterns estimation of the water regime under climate change is one of the most urgent tasks in Ukraine and the world. Such changes are determined by fluctuations in the main climatic characteristics - precipitation and air temperature, which are defined the value of evaporation. These parameters influence on the annual runoff distribution and long-term runoff fluctuations. In particular, the annual precipitation redistribution is reflected in the corresponding changes in the river runoff.<br>The assessment of the current state and nature of changes in precipitation and river runoff of the Siverskyi Donets River Basin was made by comparing the current period (1991-2018) with the period of the climatological normal (1961-1990).<br>In general, for this area, it was defined the close relationship between the amount of precipitation and the annual runoff. Against the background of insignificant (about 1%) increase of annual precipitation in recent decades, it was revealed their redistribution by seasons and separate months. There is a decrease in precipitation in the cold period (November-February). This causes (along with other factors) a decrease in the amount of snow and, accordingly, the spring flood runoff. There are frequent cases of unexpressed spring floods of the Siverskyi Donets River Basin. The runoff during March-April (the period of spring flood within the Ukrainian part of the basin) decreased by almost a third.<br>The increase of precipitation during May-June causes a corresponding (insignificant) increase in runoff in these months. The shift of the maximum monthly amount of precipitation from May (for the period 1961-1990) to June (in the current period) is observed.<br>There is a certain threat to water supply in the region due to the shift in the minimum monthly amount of precipitation in the warm period from October to August. Compared with October, there is a higher air temperature and, accordingly, higher evaporation in August, which reduces the runoff. Such a situation is solved by rational water resources management of the basin. The possibility of replenishing water resources in the basin through the transfer runoff from the Dnieper (Dnieper-Siverskyi Donets channel) and the annual runoff redistribution in the reservoir system causes some increase in the river runoff of summer months in recent decades. This is also contributed by the activities of the river basin management structures, which control the maintenance water users' of minimum ecological flow downstream the water intakes and hydraulic structures in the rivers of the basin.<br>Therefore, in the period of current climate change, the annual runoff distribution of the Siverskyi Donets River Basin has undergone significant changes, which is related to the annual precipitation redistribution and anthropogenic load on the basin.</p>


2021 ◽  
Author(s):  
Thibault Mathevet ◽  
Cyril Thébault ◽  
Jérôme Mansons ◽  
Matthieu Le Lay ◽  
Audrey Valery ◽  
...  

<p>The aim of this communication is to present a study on climate variability and change on snow water equivalent (SWE) and streamflow over the 1900-2100 period in a mediteranean and moutainuous area.  It is based on SWE and streamflow observations, past reconstructions (1900-2018) and future GIEC scenarii (up to 2100) of some snow courses and hydrological stations situated within the French Southern Alps (Mercantour Natural Parc). This has been conducted by EDF (French hydropower company) and Mercantour Natural Parc.</p><p>This issue became particularly important since a decade, especially in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production or impacts on mountainous ecosystems (fauna and flora). As a water resources manager in French mountainuous regions, EDF developed and managed a large hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurements of a hundred of snow courses within the French Alps. EDF have been operating an automatic SWE sensors network, complementary to historical snow course network. Based on numerous SWE observations time-series and snow modelization (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2018 period. These reconstructions have been extented to 1900 using 20 CR (20<sup>th</sup> century reanalyses by NOAA) reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii (+4.5 W/m² and + 8.5 W/m² hypotheses). In the scope of this study, Mercantour Natural Parc is particularly interested by snow scenarii in the future and its impacts on their local flora and fauna.</p><p>Considering observations within Durance watershed and Mercantour region, this communication focuses on: (1) long term (1900-2018) analyses of variability and trend of hydrometeorological and snow variables (total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length, streamflow regimes) , (2) long term variability of snow and hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii.</p><p>Comparing old period (1950-1984) to recent period (1984-2018), quantitative results within these regions roughly shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season duration by 15 days. Characterization of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. Then, this communication focuses on impacts on long-term time scales (2050, 2100). This long term change of snow dynamics within moutainuous regions both impacts (1) water resources management, (2) snow resorts and artificial snow production developments or (3) ecosystems dynamics.Connected to the evolution of snow seasonality, the impacts on hydrological regime and some streamflow signatures allow to characterize the possible evolution of water resources in this mediteranean and moutianuous region This study allowed to provide some local quantitative scenarii.</p>


2018 ◽  
Vol 22 (2) ◽  
pp. 1593-1614 ◽  
Author(s):  
Florian Hanzer ◽  
Kristian Förster ◽  
Johanna Nemec ◽  
Ulrich Strasser

Abstract. A physically based hydroclimatological model (AMUNDSEN) is used to assess future climate change impacts on the cryosphere and hydrology of the Ötztal Alps (Austria) until 2100. The model is run in 100 m spatial and 3 h temporal resolution using in total 31 downscaled, bias-corrected, and temporally disaggregated EURO-CORDEX climate projections for the representative concentration pathways (RCPs) 2.6, 4.5, and 8.5 scenarios as forcing data, making this – to date – the most detailed study for this region in terms of process representation and range of considered climate projections. Changes in snow coverage, glacierization, and hydrological regimes are discussed both for a larger area encompassing the Ötztal Alps (1850 km2, 862–3770 m a.s.l.) as well as for seven catchments in the area with varying size (11–165 km2) and glacierization (24–77 %). Results show generally declining snow amounts with moderate decreases (0–20 % depending on the emission scenario) of mean annual snow water equivalent in high elevations (> 2500 m a.s.l.) until the end of the century. The largest decreases, amounting to up to 25–80 %, are projected to occur in elevations below 1500 m a.s.l. Glaciers in the region will continue to retreat strongly, leaving only 4–20 % of the initial (as of 2006) ice volume left by 2100. Total and summer (JJA) runoff will change little during the early 21st century (2011–2040) with simulated decreases (compared to 1997–2006) of up to 11 % (total) and 13 % (summer) depending on catchment and scenario, whereas runoff volumes decrease by up to 39 % (total) and 47 % (summer) towards the end of the century (2071–2100), accompanied by a shift in peak flows from July towards June.


Sign in / Sign up

Export Citation Format

Share Document