Physically Based Modeling of the Long-Term Dynamics of Water Balance and Snow Water Storage Components in the Ob–Irtysh River Basin

2019 ◽  
Vol 46 (4) ◽  
pp. 493-503 ◽  
Author(s):  
E. M. Gusev ◽  
O. N. Nasonova ◽  
E. A. Shurkhno ◽  
L. Ya. Dzhogan ◽  
G. V. Aizel’
2021 ◽  
Vol 11 (18) ◽  
pp. 8365
Author(s):  
Liming Gao ◽  
Lele Zhang ◽  
Yongping Shen ◽  
Yaonan Zhang ◽  
Minghao Ai ◽  
...  

Accurate simulation of snow cover process is of great significance to the study of climate change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface model, and the simulation results were compared with the gridded dataset of snow depth at Chinese meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD), and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we compared the combinations of four parameterizations schemes of Noah-MP model at the Kuwei site. The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation results was much higher than the other three schemes; when STC uses a fully implicit scheme, the error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results of model simulation, it is concluded that the snow depth and snow water equivalent in the north of the basin are higher than those in the south. The average snow depth, snow water equivalent, snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly during the study period, but the end time of snow melting was significantly advanced.


Author(s):  
Vadim Yapiyev ◽  
Kanat Samarkhanov ◽  
Dauren Zhumabayev ◽  
Nazym Tulegenova ◽  
Saltanat Jumassultanova ◽  
...  

Both climate change and anthropogenic activities contribute to the deterioration of terrestrial water resources and ecosystems worldwide. Central Asian endorheic basins are among the most affected regions through both climate and human impacts. Here, we used a digital elevation model, digitized bathymetry maps and Landsat images to estimate the areal water cover extent and volumetric storage changes in small terminal lakes in Burabay National Nature Park (BNNP), located in Northern Central Asia (CA), for the period of 1986 to 2016. Based on the analysis of long-term climatic data from meteorological stations, short-term hydrometeorological network observations, gridded climate datasets (CRU) and global atmospheric reanalysis (ERA Interim), we have evaluated the impacts of historical climatic conditions on the water balance of BNNP lake catchments. We also discuss the future based on regional climate model projections. We attribute the overall decline of BNNP lakes to long-term deficit of water balance with lake evaporation loss exceeding precipitation inputs. Direct anthropogenic water abstraction has a minor importance in water balance. However, the changes in watersheds caused by the expansion of human settlements and roads disrupting water drainage may play a more significant role in lake water storage decline. More precise water resources assessment at the local scale will be facilitated by further development of freely available higher spatial resolution remote sensing products. In addition, the results of this work can be used for the development of lake/reservoir evaporation models driven by remote sensing and atmospheric reanalysis data without the direct use of ground observations.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Carlos Javier Villa Alvarado ◽  
Eladio Delgadillo-Ruiz ◽  
Carlos Alberto Mastachi-Loza ◽  
Enrique González-Sosa ◽  
Ramos Salinas Norma Maricela

Today the knowledge of physical parameters of a basin is essential to know adequately the rainfall-runoff process; it is well known that the specific characteristics of each basin such as temperature, geographical location, and elevation above sea level affect the maximum discharge and the basin time response. In this paper a physically based model has been applied, to analyze water balance by evaluating the volume rainfall-runoff using SHETRAN and hydrometric data measurements in 2003. The results have been compared with five ETp different methodologies in the Querétaro river basin in central Mexico. With these results the main effort of the authorities should be directed to better control of land-use changes and to working permanently in the analysis of the related parameters, which will have a similar behavior to changes currently being introduced and presented in observed values in this basin. This methodology can be a strong base for sustainable water management in a basin, the prognosis and effect of land-use changes, and availability of water and also can be used to determine application of known basin parameters, basically depending on land-use, land-use changes, and climatological database to determine the water balance in a basin.


2016 ◽  
Vol 57 (72) ◽  
pp. 11-18 ◽  
Author(s):  
Michael Kuhn ◽  
Kay Helfricht ◽  
Martin Ortner ◽  
Johannes Landmann ◽  
Wolfgang Gurgiser

ABSTRACTThe retention and release of liquid water in glacierized basins was modelled with a conceptual, semi-distributed model of the water and ice balance designed for long-term averages with monthly resolution for 100 m elevation bands. Here we present the components of the liquid water balance of 86 mostly glacierized basins on either side of the main Alpine divide between 10 and 13°E in the period 1998–2006 and compare them with the records of 30 basins monitored from 1970 to 1997. Basin average of liquid water retention has maxima in excess of 100 mm per month in May, often followed by maximum release when the retaining snow matrix melts. Glacier storage peaks in August partly due to ice melt and the ensuing filling of the englacial reservoirs and partly on account of a precipitation maximum. These two components combined to a common maximum of storage in summer in the first period 1970–97 and developed two distinct maxima in the warmer period 1998–2006. A further maximum of liquid water storage that was often found in October is most likely due to a peak in precipitation in the southern part of the study region.


Author(s):  
Heinz Dieter FILL ◽  
Irani Dos SANTOS ◽  
Cristovão FERNANDES ◽  
André TOCZECK ◽  
Mariana Fiorin De OLIVEIRA

O presente trabalho estabelece o balanço hídrico mensal da bacia do rio Barigüi para o período de 1985 a 2000, determinando para cada mês o armazenamento ativo de água na bacia. Foi utilizado um método de ajuste de evapotranspiração calculado com dados meteorológicos observados fora da bacia em análise. Para a evapotranspiração utilizaram-se estimativas médias de longo prazo da diferença entre precipitação e deflúvio, que foram ajustadas adotando a proporcionalidade entre armazenamento na bacia e evapotranspiração real. A contribuição do despejo de esgoto doméstico foi estimada a partir de dados demográficos sobre a população residente na bacia. Os fluxos de água subterrânea para dentro e fora da bacia foram desprezados. Os resultados obtidos foram coerentes com estudos similares realizados na mesma região e mostram uma precipitação média no período de 1.251 mm e um deflúvio médio de 751 mm com um coeficiente de escoamento médio de 0,50. Water balance of the Barigüi river basin in Paraná State - Brazil Abstract This paper consolidates the water balance of the Barigui River in the Metropolitan Area of Curitiba for the period of time 1985-2000, defining for each month the watershed storage. It is proposed an evapotranspiration approximation based upon meteorological data measured close to the watershed. Evapotranspiration is estimated using long term averages of the differences between precipitation and streamflow data adjusted by assuming that storage and real evapotranspiration are proportional. The sewage contribution was estimated by watershed demographic data. The results are consistent with similar studies and show an average precipitation amplitude of 1251 mm and streamflow of 751 mm over the period analyzed.


2012 ◽  
Vol 9 (3) ◽  
pp. 2717-2762 ◽  
Author(s):  
L. E. Flint ◽  
A. L. Flint ◽  
B. J. Stolp ◽  
W. R. Danskin

Abstract. The coastal-plain aquifer that underlies the San Diego City metropolitan area in southern California is a groundwater resource. The understanding of the region-wide water balance and the recharge of water from the high elevation mountains to the east needs to be improved to quantify the subsurface inflows to the coastal plain in order to develop the groundwater as a long term resource. This study is intended to enhance the conceptual understanding of the water balance and related recharge processes in this arid environment by developing a regional model of the San Diego region and all watersheds adjacent or draining to the coastal plain, including the Tijuana River basin. This model was used to quantify the various components of the water balance, including semi-quantitative estimates of subsurface groundwater flow to the coastal plain. Other approaches relying on independent data were used to test or constrain the scoping estimates of recharge and runoff, including a reconnaissance-level groundwater model of the San Diego River basin, one of three main rivers draining to the coastal plain. Estimates of subsurface flow delivered to the coastal plain from the river basins ranged from 12.3 to 28.8 million m3 yr−1 from the San Diego River basin for the calibration period (1982–2009) to 48.8 million m3 yr−1 from all major river basins for the entire coastal plain for the long-term period 1940–2009. This range of scoping estimates represents the impact of climatic variability and realistically bounds the likely groundwater availability, while falling well within the variable estimates of regional recharge. However, the scarcity of physical and hydrologic data in this region hinders the exercise to narrow the range and reduce the uncertainty.


Author(s):  
Y.O. Chоrnomorets ◽  
O.І. Lukіanets

This paper presents the results of examinations of snow-rain partitioning and water balance in the Vorskla River basin. Used for calculations have been the results of observations at three hydrological staff gauges and four meteorological stations. A common observation period for each of the characteristics has been the period of 1961-2015. Calculated for each of the hydrological staff gauges have been weight coefficients obtained at the above meteorological stations. The modern period and the period of the climatic norm (1961-1990) has been used for comparison. Сlosure errors of the water balances equation have not exceed 8% of the total precipitation. The air temperature in the Vorskla River basin has increased by 10С compared with the period of the climate norm. Because of this, the snow water equivalent has dropped by 25 mm. In the snow-rain partitioning part of solid precipitation has decreased by 4%. On the average, evapotranspiration has increased by 20 mm. The spring runoff has decreased by 7 mm, while the total amount of dry seasons runoff has increased. On the average, the closure error of the equation has increased by 20 mm due to the influence of outflow components of the water balances. The coefficient aridity and runoff coefficient has varied in two opposite directions. The increase in the coefficient aridity in the Vorskla River basin has been near 0.06 while only about one third of this increase has been offset by a corresponding decrease in the runoff coefficient. This has caused an increase in the closure error due to the outflow part of the equations of water balance. The most rapid reaction to the above changes has been observed in the smallest river basins.


2020 ◽  
Author(s):  
Kevin J Devito ◽  
Lindsay M James ◽  
Daniel S Alessi ◽  
Kelly Hokanson ◽  
Nick Kettridge ◽  
...  

<p>Peatlands are integral to sustaining landscape eco-hydrological function in water-limited boreal landscapes and serve as important water sources for headwater streams and surrounding forests, and recently for mega-scale watershed construction associated with resource extraction. Despite the regional moisture deficit of the Boreal plains, peatlands and margin swamps exist on topographic highs where low permeability (clogging) layers occur proximal to the surface and are apparently isolated from surface water and local and regional groundwater inputs. The <span>water generating mechanisms (</span>external water sources, internal feedback mechanisms) that<span> enable peatland formation with such </span>delicate water balances<span> in these </span>unique hydrogeologic settings are not well known, and have large implications for understanding the eco-hydrologic role of natural peatlands as well as direct peatland construction in drier boreal landscapes.</p><p>A multi-year sampling campaign was conducted to collect hydrometric, geochemical (DOC, pH, major cations and anions), and isotopic (D/H, <sup>18</sup>O/<sup>16</sup>O) data from a small isolated peatland-margin swamp complex. We explored the relative roles of margin swamps in buffering water loss and generating perched groundwater, shading and wind protection from adjacent forests, snow redistribution in and around the peatland, and wetland feedbacks on maintenance of peatland moisture and ecosystem function. Long-term (18 year) records of water table gradients between the peatland and an adjacent forest combined with 3 year high intensity <!-- Not sure if you mean to separate the long term data from the high intensity data from Lindsey’s project -->water balance calculations show the peatland to be a source of water to adjacent forests during this period and illustrate the dominance of autogenic wetland feedbacks over allogenic controls (external sources) in peatland development at this location. Contrasts in water storage due to the morphometry <!-- Morphometry? -->of the clogging layer appear to the dominant determinants of peatland and swamp form and function. Layers of decomposed peat and fine textured mineral soils in margin swamps with low water storage potential promoted frequent soil saturation and anoxia, limiting forest vegetation growth and water uptake, further enhancing wetland vegetation, water conservation and generation within the wetland complex. Shading and wind protection from adjacent forests appear to influence soil frost duration and atmospheric demand to further reduce evapotranspiration losses contributing to a slight moisture surplus in the wetland complex relative to the adjacent forest. Understanding the water balance and moisture surplus controls in isolated peatlands sheds light on the relative role of allogenic and autogenic controls on peatlands with implications for: 1) assessing regional eco-hydrological roles of peatland and forestland covers, 2) predicting landscape-scale response to environmental change and land use, and 3) directing landscape scale reclamation or large reconstruction projects over a range of geologic settings in water-limited boreal regions.</p>


2008 ◽  
Vol 22 (11) ◽  
pp. 1618-1629 ◽  
Author(s):  
Yoshinobu Sato ◽  
Xieyao Ma ◽  
Jianqing Xu ◽  
Masayuki Matsuoka ◽  
Hongxing Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document