A Model of the Big Bang and Universe Expansion in General Relativity with Spread of a Gas Mass from a Point to Empty Space

2020 ◽  
Vol 26 (4) ◽  
pp. 399-407
Author(s):  
A. N. Kraiko
KronoScope ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 71-89 ◽  
Author(s):  
Ettore Minguzzi

Abstract This paper proposes a cosmological model that uses a causality argument to solve the homogeneity and entropy problems of cosmology. In this model, a chronology violating region of spacetime causally precedes the remainder of the Universe, and a theorem establishes the existence of time functions precisely outside the chronology violating region. This model is shown to nicely reproduce Augustine of Hippo’s thought on time and the beginning of the Universe. In the model, the spacelike boundary representing the Big Bang is replaced by a null hypersurface at which the gravitational degrees of freedom are almost frozen while the matter and radiation content is highly homogeneous and thermalized.


2020 ◽  
Vol 35 (14) ◽  
pp. 2030007 ◽  
Author(s):  
Yen Chin Ong

The singularity theorems of Hawking and Penrose tell us that singularities are common place in general relativity. Singularities not only occur at the beginning of the Universe at the Big Bang, but also in complete gravitational collapses that result in the formation of black holes. If singularities — except the one at the Big Bang — ever become “naked,” i.e. not shrouded by black hole horizons, then it is expected that problems would arise and render general relativity indeterministic. For this reason, Penrose proposed the cosmic censorship conjecture, which states that singularities should never be naked. Various counterexamples to the conjecture have since been discovered, but it is still not clear under which kind of physical processes one can expect violation of the conjecture. In this short review, I briefly examine some progresses in space–time singularities and cosmic censorship conjecture. In particular, I shall discuss why we should still care about the conjecture, and whether we should be worried about some of the counterexamples. This is not meant to be a comprehensive review, but rather to give an introduction to the subject, which has recently seen an increase of interest.


1994 ◽  
Vol 2 (2) ◽  
pp. 165-172
Author(s):  
Halton Arp

The Big Bang theory requires all matter and galaxies to have been created simultaneously 15 billion years ago. But many young galaxies have been observed which must have been created more recently. Moreover, these younger objects, although demonstrably nearby, have large redshifts which cannot be due to recession velocity in an expanding universe. The fundamental assumption in the Big Bang is that extragalactic redshifts are caused only by the velocity of recession. It is shown here how every observational test which can be made on galaxies, and even stars, contradicts the assumption. It is described how a more general and more correct solution of the Einstein general relativity equations yields a non-expanding, continuous creation universe of unlimited age and size.


2021 ◽  
Author(s):  
Francis T.S. Yu

I will begin with the nature of our temporal (t > 0) universe, since without temporal space there would be no gravitation force because gravitational field cannot be created within an empty space. When we are dealing with physical realizability of science, Einstein’s relativity theories cannot be ignored since relativistic mechanics is dealing with very large objects. Nevertheless I will show that huge gravitational waves can be created by a gigantic mass annihilation only within a temporal (t > 0) space. Since gravitational energy has never been consider as a significant component within big bang creation, I will show it is a key component to ignite the big bang explosion, contrary to commonly believed that big bang explosion was ignited by time. I will show a huge gravitation energy reservoir induced by a gigantic mass had had been created over time well before the big bang started. Since the assumed singularity mass within a temporal (t > 0) had had gotten heavier and heavier similar to a gigantic black hole that continuingly swallows up huge chunk of substances within the space. From which we see that it is the gravitational force that triggers the thermo-nuclei big bang creation, instead ignited by time as postulated. Aside the thermo-nuclei creation, it had a gigantic gravitational wave release as mass annihilates rapidly by big bang explosion. From which we see that it is the induced gravitational reservoir changes with time, but not the induced gravity changes (i.e., curves) time–space. In other words if there has no temporal (t > 0) space then there will be no gravitational waves.


2015 ◽  
Vol 4 ◽  
pp. 49-52
Author(s):  
Ranjit Prasad Yadav

General relativity was developed by Albert Einstein near about 100 Years ago. This article attempt to give an outline about the brief history of general theory of relativity and to understand the background to the theory we have to look at how theories of gravitation developed. Before the advent of GR, Newton's law of gravitation had been accepted for more than two hundred years as a valid description of the gravitational force between masses i.e. gravity was the result of an attractive force between massive objects. General relativity has developed in to an essential tool in modern astrophysics. It provides the foundation for the understanding of black holes, regions of space where gravitational attraction is strong that not even light can escape and also a part of the big bang model of cosmology.DOI: http://dx.doi.org/10.3126/av.v4i0.12358Academic Voices Vol.4 2014: 49-52


2019 ◽  
Vol 340 (9-10) ◽  
pp. 857-865
Author(s):  
César A. Zen Vasconcellos ◽  
Dimiter Hadjimichef ◽  
Moisés Razeira ◽  
Guilherme Volkmer ◽  
Benno Bodmann

2001 ◽  
Vol 16 (10) ◽  
pp. 1715-1742 ◽  
Author(s):  
M. PAWLOWSKI ◽  
V. N. PERVUSHIN

The reparametrization-invariant generating functional for the unitary and causal perturbation theory in general relativity in a finite space–time is obtained. The region of validity of the Faddeev–Popov–DeWitt functional is studied. It is shown that the invariant content of general relativity as a constrained system can be covered by two "equivalent" unconstrained systems: the "dynamic" (with "dynamic" evolution parameter as the metric scale factor) and "geometric" (given by the Levi–Civita type canonical transformation to the action-angle variables where the energy constraint converts into a new momentum). "Big Bang," the Hubble evolution, and creation of matter fields by the "geometric" vacuum are described by the inverted Levi–Civita transformation of the geomeric system into the dynamic one. The particular case of the Levi–Civita transformations are the Bogoliubov ones of the particle variables (diagonalizing the dynamic Hamiltonian) to the quasiparticles (diagonalizing the equations of motion). The choice of initial conditions for the "Big Bang" in the form of the Bogoliubov (squeezed) vacuum reproduces all stages of the evolution of the Friedmann–Robertson–Walker universe in their conformal (Hoyle–Narlikar) versions.


2017 ◽  
Vol 14 (02) ◽  
pp. 1750024 ◽  
Author(s):  
Ovidiu Cristinel Stoica

In this article, the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The way, in which quantum information can unify quantum mechanics (and therefore the Standard model) and general relativity, is investigated. Quantum information is defined as the generalization of the concept of information as to the choice among infinite sets of alternatives. Relevantly, the axiom of choice is necessary in general. The unit of quantum information, a qubit is interpreted as a relevant elementary choice among an infinite set of alternatives generalizing that of a bit. The invariance to the axiom of choice shared by quantum mechanics is introduced: It constitutes quantum information as the relation of any state unorderable in principle (e.g. any coherent quantum state before measurement) and the same state already well-ordered (e.g. the well-ordered statistical ensemble of the measurement of the quantum system at issue). This allows of equating the classical and quantum time correspondingly as the well-ordering of any physical quantity or quantities and their coherent superposition. That equating is interpretable as the isomorphism of Minkowski space and Hilbert space. Quantum information is the structure interpretable in both ways and thus underlying their unification. Its deformation is representable correspondingly as gravitation in the deformed pseudo-Riemannian space of general relativity and the entanglement of two or more quantum systems. The Standard model studies a single quantum system and thus privileges a single reference frame turning out to be inertial for the generalized symmetry U(1)XSU(2)XSU(3) “gauging” the Standard model. As the Standard model refers to a single quantum system, it is necessarily linear and thus the corresponding privileged reference frame is necessary inertial. The Higgs mechanism U(1) → U(1)XSU(2) confirmed enough already experimentally describes exactly the choice of the initial position of a privileged reference frame as the corresponding breaking of the symmetry. The Standard model defines ‘mass at rest’ linearly and absolutely, but general relativity non-linearly and relatively. The “Big Bang” hypothesis is additional interpreting that position as that of the “Big Bang”. It serves also in order to reconcile the linear Standard model in the singularity of the “Big Bang” with the observed nonlinearity of the further expansion of the universe described very well by general relativity. Quantum information links the Standard model and general relativity in another way by mediation of entanglement. The linearity and absoluteness of the former and the nonlinearity and relativeness of the latter can be considered as the relation of a whole and the same whole divided into parts entangled in general


Author(s):  
James Binney

By far the biggest contribution of general relativity to astrophysics was to make it possible to discuss the geometry and dynamics of the entire universe—it made cosmology a branch of physics. ‘The big picture’ outlines our current understanding of how stars and galaxies emerged from the big bang, providing some context for the physical processes already described. Much of the physics involved is extremely complex and we are far from understanding how the various processes played out. The universe is a huge canvas, and nature has wrought on it with very many techniques. Our knowledge of the universe is growing rapidly, but we have much, much more to learn.


Sign in / Sign up

Export Citation Format

Share Document