Changes in lipid composition in the tissues of fresh-water plant Hydrilla verticillata induced by accumulation and elimination of heavy metals

2009 ◽  
Vol 56 (1) ◽  
pp. 85-93 ◽  
Author(s):  
V. N. Nesterov ◽  
O. A. Rozentsvet ◽  
S. V. Murzaeva
2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Fauzul Imron ◽  
Setyo Budi Kurniawan ◽  
Siti Rozaimah Sheikh Abdullah

AbstractLeachate is produced from sanitary landfills containing various pollutants, including heavy metals. This study aimed to determine the resistance of bacteria isolated from non-active sanitary landfill leachate to various heavy metals and the effect of salinity levels on the removal of Hg by the isolated bacterium. Four dominant bacteria from approximately 33 × 1017 colony-forming units per mL identified as Vibrio damsela, Pseudomonas aeruginosa, Pseudomonas stutzeri, and Pseudomonas fluorescens were isolated from non-active sanitary landfill leachate. Heavy metal resistance test was conducted for Hg, Cd, Pb, Mg, Zn, Fe, Mn, and Cu (0–20 mg L− 1). The removal of the most toxic heavy metals by the most resistant bacteria was also determined at different salinity levels, i.e., fresh water (0‰), marginal water (10‰), brackish water (20‰), and saline water (30‰). Results showed that the growth of these bacteria is promoted by Fe, Mn, and Cu, but inhibited by Hg, Cd, Pb, Mg, and Zn. The minimum inhibitory concentration (MIC) of all the bacteria in Fe, Mn, and Cu was > 20 mg L− 1. The MIC of V. damsela was 5 mg L− 1 for Hg and >  20 mg L− 1 for Cd, Pb, Mg, and Zn. For P. aeruginosa, MIC was > 20 mg L− 1 for Cd, Pb, Mg, and Zn and 10 mg L− 1 for Hg. Meanwhile, the MIC of P. stutzeri was > 20 mg L− 1 for Pb, Mg, and Zn and 5 mg L− 1 for Hg and Cd. The MIC of P. fluorescens for Hg, Pb, Mg, and Zn was 5, 5, 15, and 20 mg L− 1, respectively, and that for Cd was > 20 mg L− 1. From the MIC results, Hg is the most toxic heavy metal. In marginal water (10‰), P. aeruginosa FZ-2 removed up to 99.7% Hg compared with that in fresh water (0‰), where it removed only 54% for 72 h. Hence, P. aeruginosa FZ-2 is the most resistant to heavy metals, and saline condition exerts a positive effect on bacteria in removing Hg.


Author(s):  
Alide M. W. Cova ◽  
Fabio T. O. de Freitas ◽  
Paula C. Viana ◽  
Maria R. S. Rafael ◽  
André D. de Azevedo Neto ◽  
...  

ABSTRACT The objective of this study was to evaluate the growth and accumulation of ions in lettuce grown in different hydroponic systems and recirculation frequencies. The experimental design was randomized blocks with 8 treatments and 4 replicates. The evaluated hydroponic systems were Nutrient Flow Technique (NFT) and an adapted Deep Flow Technique (DFT), the latter with recirculation frequencies of 0.25, 2 and 4 h. Both systems used fresh water and brackish water. Plant growth, accumulation of inorganic solutes (Na+, K+, Cl- and NO3-) and the correlation between dry matter production and Na+/K+ and Cl-/NO3- were evaluated. The salinity of the water used to prepare the nutrient solution caused decrease in growth and K+ and NO3- levels, and increased contents of Na+ and Cl- in the plants. When using fresh water the highest dry matter production was obtained in the NFT system. In case of brackish water the adapted DFT system increased the production, in relation to NFT system (at same recirculation frequency: 0.25 h). It was found that the choice of the type of hydroponic system and recirculation interval for the cultivation of lettuce depends on the quality of the water used to prepare the nutrient solution.


1998 ◽  
Vol 7 (2) ◽  
pp. 75-79
Author(s):  
Abd-El Alim Abd-El Alim ◽  
Waffia Abd Allah ◽  
Mohamed El Sayed ◽  
Ashour El-Gammal
Keyword(s):  

2020 ◽  
Vol 143 ◽  
pp. 02020
Author(s):  
Tao Ma ◽  
Wenhui Zhang ◽  
Hongkai Fan ◽  
Lizhu Huang ◽  
Qing Xu ◽  
...  

The remediation performances of heavy metals contaminaged sediment by hydrophytes including Alternanthera Philoxeroides, Canna indica L., Nymphaea tetragona, Typha orientalis, Phragmites australis, Phragmites australis, Hydrilla verticillata, Cyperus alternifolius L., Eichhornia crassipes, Acorus tatarinowii, Digitaria sanguinalis (L.) Scop were investigated through batch pot experiments. The results showed that the enrichment effect of Pb was better in Alternanthera Philoxeroides and Acorus tatarinowii with the BCFs of 4.42 and 1.22, and the TFs of 7.84 and 4.23, respectively. The Cr enrichment effects by Nymphaea tetragona, Hydrilla verticillata and Eichhornia crassipes (Mart.) Solms were better, which BCFs were 2.69, 1.91 and 3.71, and which TFs were 7.93, 2.07 and 2.18, respectively.


2011 ◽  
Vol 39 (2) ◽  
pp. 135 ◽  
Author(s):  
Erzsebet BUTA ◽  
Laura PAULETTE ◽  
Tania MIHĂIESCU ◽  
Mihai BUTA ◽  
Maria CANTOR

Many plants are capable of accumulating heavy metals (called hyperacumulators), one of which is the water hyacinth Eichhornia crassipes Mart. The roots of this water plant naturally absorb pollutants, including heavy metals such as Pb, Hg, Zn, Co, Cd, and Cu and can be used for wastewater treatment. The aim of this study was to assess the influence of heavy metals on growth and development of water hyacinth and to determinate the uptake capacity of heavy metals of this species. It was evaluated for its effectiveness in reducing pollution potential in wastewater. From the combination of experimental factors 11 variants resulted. The results showed that Eichhornia absorbed a high quantity of Pb (504 mg/kg dry matter) and Cu (561 mg/kg dry matter) in their roots. More Cu accumulated in the root compared to Pb. The level of Zn absorption was lower in roots (84 mg/kg dry matter) and also in stem plus leaves (51 mg/kg dry matter). A high quantity of Cd (281 mg/kg dry matter) was removed from stem plus leaves of Eichhornia while the level of Co was very low (45 mg/kg dry matter). Regarding the growth and development of this plant it was found that in tanks with Pb plants had a better development and had flowers also, and in the case of Cd, Co, Cu at a double dose of maximum admissible limits, the plants died and the growing period was shorter.


Sign in / Sign up

Export Citation Format

Share Document