T-cadherin suppresses the cell proliferation of mouse melanoma B16F10 and tumor angiogenesis in the model of the chorioallantoic membrane

2010 ◽  
Vol 41 (4) ◽  
pp. 217-226 ◽  
Author(s):  
E. I. Yurlova ◽  
K. A. Rubina ◽  
V. Yu. Sysoeva ◽  
G. V. Sharonov ◽  
E. V. Semina ◽  
...  
Blood ◽  
2008 ◽  
Vol 112 (13) ◽  
pp. 4940-4947 ◽  
Author(s):  
Karolien Castermans ◽  
Sebastien P. Tabruyn ◽  
Rong Zeng ◽  
Judy R. van Beijnum ◽  
Cheryl Eppolito ◽  
...  

Abstract Interleukin-21 (IL-21) is a recently described immunoregulatory cytokine. It has been identified as a very potent immunotherapeutic agent in several cancer types in animal models, and clinical studies are ongoing. IL-21 belongs to the type I cytokine family of which other members, ie, IL-2, IL-15, and IL-4, have been shown to exert activities on vascular endothelial cells (ECs). We hypothesized that IL-21, in addition to inducing the antitumor immune response, also inhibits tumor angiogenesis. In vitro experiments showed a decrease of proliferation and sprouting of activated ECs after IL-21 treatment. We found that the IL-21 receptor is expressed on vascular ECs. Furthermore, in vivo studies in the chorioallantoic membrane of the chick embryo and in mouse tumors demonstrated that IL-21 treatment disturbs vessel architecture and negatively affects vessel outgrowth. Our results also confirm the earlier suggested angiostatic potential of IL-2 in vitro and in vivo. The angiostatic effect of IL-21 is confirmed by the decrease in expression of angiogenesis-related genes. Interestingly, IL-21 treatment of ECs leads to a decrease of Stat3 phosphorylation. Our research shows that IL-21 is a very powerful antitumor compound that combines the induction of an effective antitumor immune response with inhibition of tumor angiogenesis.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Caixia Gao ◽  
Xinyan Yan ◽  
Bo Wang ◽  
Lina Yu ◽  
Jichun Han ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252233
Author(s):  
Michael I. Dorrell ◽  
Heidi R. Kast-Woelbern ◽  
Ryan T. Botts ◽  
Stephen A. Bravo ◽  
Jacob R. Tremblay ◽  
...  

Tumor angiogenesis is critical for the growth and progression of cancer. As such, angiostasis is a treatment modality for cancer with potential utility for multiple types of cancer and fewer side effects. However, clinical success of angiostatic monotherapies has been moderate, at best, causing angiostatic treatments to lose their early luster. Previous studies demonstrated compensatory mechanisms that drive tumor vascularization despite the use of angiostatic monotherapies, as well as the potential for combination angiostatic therapies to overcome these compensatory mechanisms. We screened clinically approved angiostatics to identify specific combinations that confer potent inhibition of tumor-induced angiogenesis. We used a novel modification of the ex ovo chick chorioallantoic membrane (CAM) model that combined confocal and automated analyses to quantify tumor angiogenesis induced by glioblastoma tumor onplants. This model is advantageous due to its low cost and moderate throughput capabilities, while maintaining complex in vivo cellular interactions that are difficult to replicate in vitro. After screening multiple combinations, we determined that glioblastoma-induced angiogenesis was significantly reduced using a combination of bevacizumab (Avastin®) and temsirolimus (Torisel®) at doses below those where neither monotherapy demonstrated activity. These preliminary results were verified extensively, with this combination therapy effective even at concentrations further reduced 10-fold with a CI value of 2.42E-5, demonstrating high levels of synergy. Thus, combining bevacizumab and temsirolimus has great potential to increase the efficacy of angiostatic therapy and lower required dosing for improved clinical success and reduced side effects in glioblastoma patients.


CellBio ◽  
2014 ◽  
Vol 03 (02) ◽  
pp. 60-71 ◽  
Author(s):  
Pandurangan Ramaraj ◽  
James L. Cox

Sign in / Sign up

Export Citation Format

Share Document