Establishment of visceral left-right asymmetry in mammals: The role of ciliary action and leftward fluid flow in the region of Hensen’s node

2013 ◽  
Vol 44 (5) ◽  
pp. 254-266 ◽  
Author(s):  
A. S. Ermakov
1956 ◽  
Vol 184 (2) ◽  
pp. 296-300 ◽  
Author(s):  
László Kátó ◽  
Béla Gözsy

Experiments are presented to the effect that in an inflammatory process histamine and leucotaxin appear successively at different and orderly time intervals, thus assuring an increased fluid flow through the capillary wall. Histamine is released not only in the inflammatory process but also by intradermal administration of such substances (volatile oils or their components) which induce neither the triple response of Th. Lewis nor any tissue damage. This could be explained by the fact that in the tissues histamine is ‘present’ but leucotaxin is ‘formed.’


Author(s):  
Zhiqiang Sha ◽  
Dick Schijven ◽  
Amaia Carrion-Castillo ◽  
Marc Joliot ◽  
Bernard Mazoyer ◽  
...  

AbstractLeft–right hemispheric asymmetry is an important aspect of healthy brain organization for many functions including language, and it can be altered in cognitive and psychiatric disorders. No mechanism has yet been identified for establishing the human brain’s left–right axis. We performed multivariate genome-wide association scanning of cortical regional surface area and thickness asymmetries, and subcortical volume asymmetries, using data from 32,256 participants from the UK Biobank. There were 21 significant loci associated with different aspects of brain asymmetry, with functional enrichment involving microtubule-related genes and embryonic brain expression. These findings are consistent with a known role of the cytoskeleton in left–right axis determination in other organs of invertebrates and frogs. Genetic variants associated with brain asymmetry overlapped with those associated with autism, educational attainment and schizophrenia. Comparably large datasets will likely be required in future studies, to replicate and further clarify the associations of microtubule-related genes with variation in brain asymmetry, behavioural and psychiatric traits.


1999 ◽  
Vol 266 (1-4) ◽  
pp. 420-424 ◽  
Author(s):  
U.M.S. Costa ◽  
J.S.Andrade Jr. ◽  
H.A. Makse ◽  
H.E. Stanley

1981 ◽  
Vol 9 ◽  
Author(s):  
D.C. Miller

ABSTRACTIn the Czochralski growth of single crystals from large melts, fluid flow phenomena have a major effect on interface shape, growth striations, defect density and the length of crystals which can be grown from a melt of given volume and thermal geometry. Because of the technical difficulties encountered in making direct measurements in molten oxides, simulation experiments have been extensively utilized to gain insight into melt behavior.Both temperature profile and flow geometry results from simulation experiments are discussed. This data is supported by direct melt observations and results from the characterization of grown crystals. When reviewed together, this information offers new insights into the complex behavior of Czochralski growth processes, including the role of thermal gradients, crystal rotation, and surface tension driven (Marangoni) convection.


Open Medicine ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Zlatislav Stoyanov ◽  
Lyoubka Decheva ◽  
Irina Pashalieva ◽  
Piareta Nikolova

AbstractThe principle of symmetry-asymmetry is widely presented in the structural and functional organization of the nonliving and living nature. One of the most complex manifestations of this principle is the left-right asymmetry of the human brain. The present review summarizes previous and contemporary literary data regarding the role of brain asymmetry in neuroimmunomodulation. Some handedness-related peculiarities are outlined additionally. Brain asymmetry is considered to be imprinted in the formation and regulation of the individual’s responses and relationships at an immunological level with the external and internal environment. The assumptions that the hemispheres modulate immune response in an asymmetric manner have been confirmed in experiments on animals. Some authors assume that the right hemisphere plays an indirect role in neuroimmunomodulation, controlling and suppressing the left hemispheric inductive signals.


Author(s):  
Gaffar Gailani ◽  
Mohammed Benalla ◽  
Rashal Mahamud ◽  
Stephen Cowin ◽  
Luis Cardoso

Determining the poroelastic properties of osteons is critical to better understand the role of fluid flow in the nutrition, mechanotransduction, remodeling, homeostasis and loss of bone. The permeability of single osteons is among the key properties that may influence these phenomena. The measurement of permeability of a single osteon remains one of the most demanding tasks in bone mechanics to be developed. Two associated challenges are the size of the osteon and the absence of appropriate tools and methods to perform such measurement. In this communication, we present the development of a new procedure to isolate osteons, the design of a mechanism for loading an osteon and the comparison of the stress relaxation test in unconfined compression experiment with the analytical results for a compressible transverse isotropy model that we previously reported in Gailani and Cowin [1]. These experimentally determined values of permeability and mechanical properties have shown reasonable agreement with the previously reported experimentally and theoretically estimated values.


Sign in / Sign up

Export Citation Format

Share Document