Isolation, Loading and Estimating the Poroelastic Properties of a Single Osteon

Author(s):  
Gaffar Gailani ◽  
Mohammed Benalla ◽  
Rashal Mahamud ◽  
Stephen Cowin ◽  
Luis Cardoso

Determining the poroelastic properties of osteons is critical to better understand the role of fluid flow in the nutrition, mechanotransduction, remodeling, homeostasis and loss of bone. The permeability of single osteons is among the key properties that may influence these phenomena. The measurement of permeability of a single osteon remains one of the most demanding tasks in bone mechanics to be developed. Two associated challenges are the size of the osteon and the absence of appropriate tools and methods to perform such measurement. In this communication, we present the development of a new procedure to isolate osteons, the design of a mechanism for loading an osteon and the comparison of the stress relaxation test in unconfined compression experiment with the analytical results for a compressible transverse isotropy model that we previously reported in Gailani and Cowin [1]. These experimentally determined values of permeability and mechanical properties have shown reasonable agreement with the previously reported experimentally and theoretically estimated values.

Author(s):  
Amiruddin Mat Johari ◽  
Nur Aliaa Abd Rahman ◽  
Roseliza Kadir Basha ◽  
Azhari Samsu Baharudin ◽  
Mohd Afandi P. Mohammed ◽  
...  

Jackfruit frozen confection has been mechanically characterised in situ by using compression tests. There are no available studies on the mechanical behaviour of jackfruit frozen confection.   The aim of this study is to identify the mechanical properties of jackfruit frozen confections formulated with different concentrations of jackfruit puree. In this study, the experimental analyses are conducted using a compression test device made from LEGO Mindstorms EV3. The portable device is placed inside a freezer to enable the measurements to be done in low temperatures (-20oC). This is to overcome the limitation of an actual texture analyser which can only be operated at room temperature. The mechanical properties of jackfruit frozen confections at different jackfruit puree concentrations (10%, 20% and 30%) are obtained using the tester and analysed. The tests conducted are uniaxial compression, stress relaxation test and multi-step stress relaxation test. It has been observed that frozen confection with 20% jackfruit puree concentration (JF20) is able to withstand a higher force of compression (27.79kPa) compared to the ones with 10% (JF10) and 30% (JF30) concentrations, at 21.15kPa and 10.48kPa, respectively. For stress relaxation test, JF30 has the highest increasing stress for a strain of 0.05 to 0.2 but it decreases at a strain of 0.3 to 0.4. The results of the multi-step relaxation test on JF30 show agreement with the other two tests where the stress decays starting from the 3rd step until the 5th step of the test. This study provides information on the behaviour of jackfruit frozen confection when subjected to compression and stress that imitates the movement during consumption.


1999 ◽  
Author(s):  
Mark R. DiSilvestro ◽  
Qiliang Zhu ◽  
Marcy Wong ◽  
Jukka Jurvelin ◽  
Jun-Kyo Suh

Abstract Articular cartilage lining the articulating surfaces in diarthrodial joints is composed of an extracellular matrix and interstitial fluid. The complex mechanical behavior of this tissue has been successfully modeled by the linear biphasic poroviscoelastic (BPVE) model first introduced by Mak (1986). This model, a simple extension of the well-known biphasic theory first proposed by Mow et al. (1980), accounts for both fluid flow-dependent and fluid flow-independent viscoelastic mechanisms which contribute to the overall mechanical behavior exhibited by the tissue. Despite the success of the linear BPVE model for indentation (Suh and Bai, 1997), as well as that described for unconfined compression (Suh and DiSilvestro, 1997, 1998), the model’s ability to account for more than one measurable variable with a single parameter set has not been established. Therefore, the objective, of this study was to assess the ability of the linear BPVE model to account for both the axial reaction force and lateral deformation of a cylindrical plug of articular cartilage subjected to unconfined compression under a stress relaxation protocol.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
H. Hatami-Marbini ◽  
R. Maulik

The unconfined compression experiments are commonly used for characterizing the mechanical behavior of hydrated soft tissues such as articular cartilage. Several analytical constitutive models have been proposed over the years to analyze the unconfined compression experimental data and subsequently estimate the material parameters. Nevertheless, new mathematical models are still required to obtain more accurate numerical estimates. The present study aims at developing a linear transversely isotropic poroviscoelastic theory by combining a viscoelastic material law with the transversely isotropic biphasic model. In particular, an integral type viscoelastic model is used to describe the intrinsic viscoelastic properties of a transversely isotropic solid matrix. The proposed constitutive theory incorporates viscoelastic contributions from both the fluid flow and the intrinsic viscoelasticity to the overall stress-relaxation behavior. Moreover, this new material model allows investigating the biomechanical properties of tissues whose extracellular matrix exhibits transverse isotropy. In the present work, a comprehensive parametric study was conducted to determine the influence of various material parameters on the stress–relaxation history. Furthermore, the efficacy of the proposed theory in representing the unconfined compression experiments was assessed by comparing its theoretical predictions with those obtained from other versions of the biphasic theory such as the isotropic, transversely isotropic, and viscoelastic models. The unconfined compression behavior of articular cartilage as well as corneal stroma was used for this purpose. It is concluded that while the proposed model is capable of accurately representing the viscoelastic behavior of any hydrated soft tissue in unconfined compression, it is particularly useful in modeling the behavior of those with a transversely isotropic skeleton.


2000 ◽  
Vol 123 (2) ◽  
pp. 191-197 ◽  
Author(s):  
Mark R. DiSilvestro ◽  
Qiliang Zhu ◽  
Marcy Wong ◽  
Jukka S. Jurvelin ◽  
Jun-Kyo Francis Suh

This study investigated the ability of the linear biphasic poroelastic (BPE) model and the linear biphasic poroviscoelastic (BPVE) model to simultaneously predict the reaction force and lateral displacement exhibited by articular cartilage during stress relaxation in unconfined compression. Both models consider articular cartilage as a binary mixture of a porous incompressible solid phase and an incompressible inviscid fluid phase. The BPE model assumes the solid phase is elastic, while the BPVE model assumes the solid phase is viscoelastic. In addition, the efficacy of two additional models was also examined, i.e., the transversely isotropic BPE (TIBPE) model, which considers transverse isotropy of the solid matrix within the framework of the linear BPE model assumptions, and a linear viscoelastic solid (LVE) model, which assumes that the viscoelastic behavior of articular cartilage is solely governed by the intrinsic viscoelastic nature of the solid matrix, independent of the interstitial fluid flow. It was found that the BPE model was able to accurately account for the lateral displacement, but unable to fit the short-term reaction force data of all specimens tested. The TIBPE model was able to account for either the lateral displacement or the reaction force, but not both simultaneously. The LVE model was able to account for the complete reaction force, but unable to fit the lateral displacement measured experimentally. The BPVE model was able to completely account for both lateral displacement and reaction force for all specimens tested. These results suggest that both the fluid flow-dependent and fluid flow-independent viscoelastic mechanisms are essential for a complete simulation of the viscoelastic phenomena of articular cartilage.


1998 ◽  
Vol 120 (4) ◽  
pp. 491-496 ◽  
Author(s):  
B. Cohen ◽  
W. M. Lai ◽  
V. C. Mow

Using the biphasic theory for hydrated soft tissues (Mow et al., 1980) and a transversely isotropic elastic model for the solid matrix, an analytical solution is presented for the unconfined compression of cylindrical disks of growth plate tissues compressed between two rigid platens with a frictionless interface. The axisymmetric case where the plane of transverse isotropy is perpendicular to the cylindrical axis is studied, and the stress-relaxation response to imposed step and ramp displacements is solved. This solution is then used to analyze experimental data from unconfined compression stress-relaxation tests performed on specimens from bovine distal ulnar growth plate and chondroepiphysis to determine the biphasic material parameters. The transversely isotropic biphasic model provides an excellent agreement between theory and experimental results, better than was previously achieved with an isotropic model, and can explain the observed experimental behavior in unconfined compression of these tissues.


Author(s):  
Судоргин Е.П. ◽  
Карсакова И.Н.

Аннотация: О роли разминки перед тренировкой и соревнованиями написано много научных статьей и диссертаций. Ещё больше о значимости физической подготовки спортсменов, в том числе и шахматистов. В то же время авторы считают, что вопросу физической подготовки шахматистов и в частности разминке в научной и научно-методической литературе уделяется недостаточно внимания. В своей статье авторы приводят собственные экспериментальные данные о влиянии физических упражнений (разминки) на умственную работоспособность студентов-шахматистов БГУ и как следствие на спортивные результаты команды. Ключевые слова: Шахматы, разминка, умственная работоспособность, средства и методы разминки, методы оценки результатов. Аннотация: Машыгуунун жана мелдештердин алдында даярдоонун ролу жөнүндө көптөгөн илимий макала жана диссертация жазылган. Ошондой эле илимий жана илимий-методикалык адабияттарда шахматка даярдоого көп көңүл бурулбай жатат. Макаланын авторлору шахмат ойногон студенттерге физикалык көнүгүүлөрдүн тийгизген таасири жөнүндө өздөрүнүн эксперименталдык маалыматтарын көргөзүштү. Түйүндүү сөздөр: Шахмат, акыл-дарамет, курулуштар жана ыкмалар, баа берүү жыйынтыгы боюнча кабыл алынат. Abstract: on the role of warm-up before training and competitions written many scientific articles and theses. More about the significance of the physical preparation of athletes, including players. At the same time, the authors believe that the issue of fit- ness players and in particular workout in scientific and scientific-methodical literature neglected. In his article the authors cite their own experimental data on the influence of physical exercises (warm-up) on the mental fitness of students-BSU players and as a result the sport performance team. Keywords: chess, warm-up, mental fitness, workout tools and methods, methods of evaluation results.


1956 ◽  
Vol 184 (2) ◽  
pp. 296-300 ◽  
Author(s):  
László Kátó ◽  
Béla Gözsy

Experiments are presented to the effect that in an inflammatory process histamine and leucotaxin appear successively at different and orderly time intervals, thus assuring an increased fluid flow through the capillary wall. Histamine is released not only in the inflammatory process but also by intradermal administration of such substances (volatile oils or their components) which induce neither the triple response of Th. Lewis nor any tissue damage. This could be explained by the fact that in the tissues histamine is ‘present’ but leucotaxin is ‘formed.’


Sign in / Sign up

Export Citation Format

Share Document