Pharmacognostic study of aerial parts of Baikal skullcap (Scutellaria baicalensis Georgi)

2010 ◽  
Vol 36 (7) ◽  
pp. 909-914 ◽  
Author(s):  
N. K. Chirikova ◽  
D. N. Olennikov ◽  
L. M. Tankhaeva
2021 ◽  
Vol 16 (8) ◽  
pp. 1934578X2110259
Author(s):  
Sims K. Lawson ◽  
Prabodh Satyal ◽  
William N. Setzer

Scutellaria (skullcap) are important medicinal plants. Scutellaria baicalensis and S.barbata have been used in Chinese traditional medicine, while S. incana and S. lateriflora were used as herbal medicines by Native Americans. In this work, the essential oils of Scutellaria baicalensis Georgi, Scutellaria barbata D. Don , Scutellaria incana Biehler, and Scutellaria lateriflora L. were obtained from plants cultivated in south Alabama and analyzed by gas chromatographic techniques, including chiral gas chromatography. The most abundant components in the Scutellaria essential oils were 1-octen-3-ol (31.2% in S. incana), linalool (6.8% in S. incana), thymol (7.7% in S. barbata), carvacrol (9.3% in S. baicalensis), ( E)-β caryophyllene (11.6% in S. baicalensis), germacrene D (39.3% in S. baicalensis), ( E)-nerolidol (10.5% in S. incana), palmitic acid (15.6% in S. barbata), phytol (19.7% in S. incana), and linolenic acid (8.0% in S. barbata). These analyses of the essential oil compositions and enantiomeric ratios of predominant aromatic molecules add to our understanding of the medicinal phytochemistry of the genus Scutellaria.


2021 ◽  
Vol 11 (13) ◽  
pp. 6055
Author(s):  
Akhtar Ali ◽  
En-Hyung Kim ◽  
Jong-Hyun Lee ◽  
Kang-Hyun Leem ◽  
Shin Seong ◽  
...  

Prolonged inflammation results in chronic diseases that can be associated with a range of factors. Medicinal plants and herbs provide synergistic benefits based on the interaction of multiple phytochemicals. The dried root of Scutellaria baicalensis Georgi and its compounds possess anti-inflammatory, anti-oxidative, and anticancer effects. Processing is a traditional method to achieve clinical benefits by improving therapeutic efficacy and lowering toxicity. In this study, we investigated the anti-inflammatory and anti-oxidant effect of processed Scutellaria baicalensis Georgi extract (PSGE) against lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Data using Griess assay and ELISA showed that PSGE decreased nitric oxide and prostaglandin E2 (PGE2) levels against LPS. PSGE treatment up-regulated 15-hydroxyprostaglandin dehydrogenase (PGDH), while cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 expression did not change. Interestingly, PGE2 inhibition was regulated by prostaglandin catabolic enzyme 15-PGDH rather than COX-2/mPGES-1, enzymes essential for PGE2 synthesis. Additionally, PSGE-suppressed LPS-induced IL-6 and TNF-α production through NF-κB signaling. NF-κB release from an inactive complex was inhibited by HO-1 which blocked IκBα phosphorylation. The ROS levels lowered by PSGE were measured with the H2DCFDA probe. PSGE activated NRF2 signaling and increased antioxidant Hmox1, Nqo1, and Txn1 gene expression, while reducing KEAP1 expression. In addition, pharmacological inhibition of HO-1 confirmed that the antioxidant enzyme induction by PSGE was responsible for ROS reduction. In conclusion, PSGE demonstrated anti-inflammatory and anti-oxidant effects due to NRF2/HO-1-mediated NF-κB and ROS inhibition.


2007 ◽  
Vol 17 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Chunyan Duan ◽  
Seishi Matsumura ◽  
Naoyuki Kariya ◽  
Michiko Nishimura ◽  
Tsutomu Shimono

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hui Wang ◽  
Xiaodi Ma ◽  
Qibin Cheng ◽  
Xiaoli Xi ◽  
Liwei Zhang

Deep eutectic solvents (DESs) have attracted significant attention as green media for the extraction and separation of natural compounds from Chinese medicine. In this study, a hydrophobic DESs-based microwave-assisted extraction (MAE) was successfully used to efficiently extract baicalin from Scutellaria baicalensis Georgi. Firstly, DecA: N4444-Cl (DES-1 , molar ratio 1 : 2) was screened and selected as the most appropriate DES by comparing the extraction yield in different hydrophobic DESs. Based on the extraction yield of baicalin, response surface methodology (RSM) was employed to model and optimize the parameters (extraction temperature, liquid-solid ratio, and extraction time). Furthermore, the maximum yield of 106.96 mg·g−1 was achieved under optimum conditions in DES-containing aqueous solutions (33 vol% water content), which reached a similar level that was conducted using the pharmacopoeia procedure (104.94 mg·g−1). These results indicated that the proposed method is an excellent alternative for the extraction of baicalin.


Sign in / Sign up

Export Citation Format

Share Document