Functional Materials from Paper Wastes: I. From Waste Newsprint Paper and Cardboard to High-Grade Cellulose Fibers

2019 ◽  
Vol 45 (7) ◽  
pp. 888-894
Author(s):  
A. M. Mikhailidi ◽  
Sh. Karim Saurov ◽  
V. I. Markin ◽  
N. E. Kotelnikova
2018 ◽  
pp. 27-35
Author(s):  
Александра (Aleksandra) Михайловна (Mikhailovna) Михаилиди (Mikhailidi) ◽  
Вадим (Vadim) Иванович (Ivanovich) Маркин (Markin) ◽  
Нина (Nina) Ефимовна (Efimovna) Котельникова (Kotel'nikova) ◽  
Shahriar Karim Saurov

Utilization of paper wastes as renewable resource of lignocellulosic constituents has the opportunity to promote a cleaner environment and to prepare valuable materials. This paper describes our study on an isolation of low-fiber powder cellulose from two grades of wastes as feedstocks: waste newsprint paper and cardboard wrapper through recycling including a thermal defibration, an alkali treatment with a solution of NaOH with a concentration from 0.03 to 1.00 М, a bleaching with a solution of Н2О2 with a concentration from 0.8 to 2.6 М followed with an acid hydrolysis of the pretreated species with a solution of HNO3 of 1.5 and 3.0 M. An impact of the pretreatment on sizes of fibers was evaluated with a stereoscopic microscopy. The powder celluloses obtained as a result of the acid hydrolysis exhibited the structure of cellulose I revealed with a WAXS method and were of a high-grade purity, according to EDXA. Sorption capacities of the powder celluloses from the waste cardboard and newsprint towards a dye methylene blue were 6.67 mg∙g-1 and 8.75 mg∙g-1 correspondingly.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (02) ◽  
pp. 92-111 ◽  
Author(s):  
Charu Agarwal ◽  
Levente Csoka

Being the most abundant natural biopolymer on earth, cellulose has been vastly exploited in a range of applications, from writing paper to high-end biosensors. Natural cellulose fibers can be isolated from wood or non-woody plants such as hemp, jute, flax, and bamboo by chemical or mechanical treatments. To make it suitable for targeted applications, cellulose fibers are modified with functional moieties in the nanometer scale. Cellulose has been functionalized with noble metals such as silver and gold nanoparticles for catalysis and antimicrobial applications. A number of metal oxides, such as zinc oxide, titanium dioxide, and tin dioxide have been incorporated into cellulose. The porosity, hydrophilicity, and roughness of cellulose surface makes it an ideal substrate for a plethora of sensing applications. Further, it can be made into a lightweight, portable, foldable, and disposable device, which provides an excellent platform for various point-of-care purposes. Cellulose fibers have also been immobilized with carbon nanomaterials, including carbon nanotubes and graphene oxide. For optical applications, [Fe(hptrz)3](OTs)2 spin-crossover nanoparticles have also been immobilized on cellulose fibers. Likewise, many enzymes, macromolecules, and some polymers have been used to modify natural cellulose for specific end uses. This review focuses on recent developments in the modification or immobilization of functional materials on cellulose fibers, in macro-scale only, obtained from wood or plant sources.


2015 ◽  
Vol 112 (29) ◽  
pp. 8971-8976 ◽  
Author(s):  
Hongli Zhu ◽  
Shuze Zhu ◽  
Zheng Jia ◽  
Sepideh Parvinian ◽  
Yuanyuan Li ◽  
...  

The quest for both strength and toughness is perpetual in advanced material design; unfortunately, these two mechanical properties are generally mutually exclusive. So far there exists only limited success of attaining both strength and toughness, which often needs material-specific, complicated, or expensive synthesis processes and thus can hardly be applicable to other materials. A general mechanism to address the conflict between strength and toughness still remains elusive. Here we report a first-of-its-kind study of the dependence of strength and toughness of cellulose nanopaper on the size of the constituent cellulose fibers. Surprisingly, we find that both the strength and toughness of cellulose nanopaper increase simultaneously (40 and 130 times, respectively) as the size of the constituent cellulose fibers decreases (from a mean diameter of 27 μm to 11 nm), revealing an anomalous but highly desirable scaling law of the mechanical properties of cellulose nanopaper: the smaller, the stronger and the tougher. Further fundamental mechanistic studies reveal that reduced intrinsic defect size and facile (re)formation of strong hydrogen bonding among cellulose molecular chains is the underlying key to this new scaling law of mechanical properties. These mechanistic findings are generally applicable to other material building blocks, and therefore open up abundant opportunities to use the fundamental bottom-up strategy to design a new class of functional materials that are both strong and tough.


Author(s):  
Yoichi Ishida ◽  
Hideki Ichinose ◽  
Yutaka Takahashi ◽  
Jin-yeh Wang

Layered materials draw attention in recent years in response to the world-wide drive to discover new functional materials. High-Tc superconducting oxide is one example. Internal interfaces in such layered materials differ significantly from those of cubic metals. They are often parallel to the layer of the neighboring crystals in sintered samples(layer plane boundary), while periodically ordered interfaces with the two neighboring crystals in mirror symmetry to each other are relatively rare. Consequently, the atomistic features of the interface differ significantly from those of cubic metals. In this paper grain boundaries in sintered high-Tc superconducting oxides, joined interfaces between engineering ceramics with metals, and polytype interfaces in vapor-deposited bicrystal are examined to collect atomic information of the interfaces in layered materials. The analysis proved that they are not neccessarily more complicated than that of simple grain boundaries in cubic metals. The interfaces are majorly layer plane type which is parallel to the compound layer. Secondly, chemical information is often available, which helps the interpretation of the interface atomic structure.


Author(s):  
S. E. Keckler ◽  
D. M. Dabbs ◽  
N. Yao ◽  
I. A. Aksay

Cellular organic structures such as wood can be used as scaffolds for the synthesis of complex structures of organic/ceramic nanocomposites. The wood cell is a fiber-reinforced resin composite of cellulose fibers in a lignin matrix. A single cell wall, containing several layers of different fiber orientations and lignin content, is separated from its neighboring wall by the middle lamella, a lignin-rich region. In order to achieve total mineralization, deposition on and in the cell wall must be achieved. Geological fossilization of wood occurs as permineralization (filling the void spaces with mineral) and petrifaction (mineralizing the cell wall as the organic component decays) through infiltration of wood with inorganics after growth. Conversely, living plants can incorporate inorganics into their cells and in some cases into the cell walls during growth. In a recent study, we mimicked geological fossilization by infiltrating inorganic precursors into wood cells in order to enhance the properties of wood. In the current work, we use electron microscopy to examine the structure of silica formed in the cell walls after infiltration of tetraethoxysilane (TEOS).


2020 ◽  
Vol 11 (48) ◽  
pp. 7603-7624
Author(s):  
Ismail Altinbasak ◽  
Mehmet Arslan ◽  
Rana Sanyal ◽  
Amitav Sanyal

This review provides an overview of synthetic approaches utilized to incorporate the thiol-reactive pyridyl-disulfide motif into various polymeric materials, and briefly highlights its utilization to obtain functional materials.


2007 ◽  
Vol 177 (4S) ◽  
pp. 421-421
Author(s):  
Veronica Triaca ◽  
Christian O. Twiss ◽  
Ramdev Konijeti ◽  
Larissa V. Rodriguez ◽  
Shlomo Raz

Sign in / Sign up

Export Citation Format

Share Document