Increasing accelerator electron beam current based on magnetron gun with secondary-emission cathode

2010 ◽  
Vol 7 (7) ◽  
pp. 572-576
Author(s):  
A. N. Dovbnya ◽  
V. V. Zakutin ◽  
N. G. Reshetnyak ◽  
M. I. Ayzatsky ◽  
V. N. Boriskin ◽  
...  
2014 ◽  
Vol 11 (5) ◽  
pp. 647-650
Author(s):  
N. I. Aizatsky ◽  
A. N. Dovbnya ◽  
V. V. Zakutin ◽  
N. G. Reshetnyak ◽  
V. P. Romas’ko ◽  
...  

Author(s):  
Oleksandr Mazmanishvili ◽  
Nikolay Reshetnyak ◽  
Ganna Sydorenko

The article presents the results of research and calculations on the formation of a radial electron beam by a magnetron gun with a secondary emission cathode in the electron energy range 35...65 keV and measuring its parameters during transportation in the total decreasing magnetic field of thesolenoid and the stray field of permanent magnets. The beam was transported in a system consisting of copper rings with an inner diameter of 66 mm,located at a distance of 85 mm from the exit of the magnetron gun. The dependence of the beam current on the amplitude and gradient of the fielddecay has been studied. The studies carried out have shown the possibility of stable formation of a radial electron beam with an energy of tens of keVin the decreasing magnetic field of the solenoid. By optimizing the distribution of the magnetic field (created by the solenoid and ring magnets) and itsdecay gradient, it is possible to achieve an increase in the incident of electrons on one ring (up to ~72% of the beam current). On the basis of themathematical model of the movement of the electron flow, a software tool has been synthesized that makes it possible to obtain and interpret thecharacteristics of the resulting flows. The obtained numerical dependences are in satisfactory agreement with the experimental results for a magneticfield with a large decay gradient. Various configurations of the magnetic field are considered. Solutions to the direct problem of modeling electrontrajectories for given initial conditions and parameters are obtained. Various configurations of the magnetic field are considered. It is shown that forthe selected initial conditions for the electron beam and the distributions of the longitudinal magnetic field along the axis of the gun and the transportchannel, the electron flux falls on a vertical section, the length of which is on the order of a millimeter. Thus, by changing the amplitude anddistribution of the magnetic field, it is possible to control the current in the radial direction along the length of the pipe, and, therefore, the place of theelectron irradiation.


2021 ◽  
Vol 248 ◽  
pp. 04001
Author(s):  
Alexander Metel ◽  
Enver Mustafaev ◽  
Yury Melnik ◽  
Khaled Hamdy

We present a new method of product processing with beams of accelerated electrons and fast neutral atoms, which are generated by an immersed in plasma grid under a high negative voltage of 5 kV. The electrons appear due to secondary emission from the grid surface provoked by its bombardment with ions accelerated from the plasma. At the gas pressure not exceeding 0.1 Pa the ions with energy of 5 keV reach the grid without collisions in the space charge sheaths near its surface and their current in the grid circuit is by 2-3 times lower than the electron current. At higher pressures accelerated ions due to charge exchange collisions in the sheaths turn into fast neutral atoms leaving the sheaths and forming the beams. With the pressure increasing, the electron beam current diminishes and the current of fast atom beam grows.


1999 ◽  
Vol 53 (4-5) ◽  
pp. 144-149
Author(s):  
N. I. Ayzatsky ◽  
A. N. Dovbnya ◽  
V. V. Zakutin ◽  
N. G. Reshetnyak ◽  
V. P. Romas'ko ◽  
...  

2009 ◽  
Vol 156-158 ◽  
pp. 487-492 ◽  
Author(s):  
M.V. Zamoryanskaya

In this paper the new method for determination of luminescent centers concentration are discussed. While the possibility of electron traps determination and definition of its activation energy are suggested. The cathodoluminescent (CL) method was used. The determination of luminescent centers concentration in silicon oxide is based on the measurements of dependences of CL intensity on electron beam current. The presence and energy of activation of electron traps were studied by measurement of rise time and decay of luminescent band during the stationary irradiation of silica by electron beam.


2019 ◽  
Vol 253 ◽  
pp. 03005 ◽  
Author(s):  
M. Sroka ◽  
E. Jonda ◽  
M. Węglowski ◽  
S. Błacha

The paper presents the influence of electron - beam (EB) remelting effect on the surface layer electrochemical parameters obtained from potentiodynamic anodic polarization studies and impedance spectroscopy measurements for a set of Inconel 617 electron beam remelted obtained for different process parameters. The correlation between EBW process parameters and characteristic of surface oxide layer properties and resistance to the acidic environment were discussed. The electrochemical studies were supported by microstructural analysis of the remelted zone (RZ), heat affected zone (HAZ), native metal and observed precipitates formed under rapid solidification process. Both electrochemical technics applied to evaluate corrosion properties of remelted Inconel 617 evidenced a strong influence of the electron beam current on the corrosion resistance.


2008 ◽  
Vol 13 (2) ◽  
pp. 263-273
Author(s):  
Svetlana Sytova

Nonlinear phenomena originating in volume free electron laser (VFEL) are investigated by methods of mathematical modelling using computer code VOLC. It was demonstrated the possibility of excitation of quasiperiodic oscillations not far from threshold values of electron beam current density and VFEL resonator length. It was investigated sensibility of numerical solution to initial conditions for different VFEL regimes of operation. Parametric maps with respect to electron beam current and detuning from synchronism condition present complicated root to chaos with windows of periodicity in VFEL. Investigation of chaotic lasing dynamics in VFEL is important in the light of experimental development of VFEL in Research Institute for Nuclear Problems.


Sign in / Sign up

Export Citation Format

Share Document