The role of low-molecular-mass electrolyte drug substances in the modification of the chitosan matrix

2015 ◽  
Vol 57 (3) ◽  
pp. 244-251 ◽  
Author(s):  
E. I. Kulish ◽  
A. S. Shurshina ◽  
V. V. Chernova ◽  
V. P. Zakharov
2003 ◽  
Vol 49 (10) ◽  
pp. 625-632 ◽  
Author(s):  
Claudia Masini d'Avila-Levy ◽  
Rodrigo F Souza ◽  
Rosana C Gomes ◽  
Alane B Vermelho ◽  
Marta H Branquinha

Actively motile cells from a cured strain of Crithidia deanei released proteins in phosphate buffer (pH 7.4). The molecular mass of the released polypeptides, which included some proteinases, ranged from 19 to 116 kDa. One of the major protein bands was purified to homogeneity by a combination of anion-exchange and gel filtration chromatographs. The apparent molecular mass of this protein was estimated to be 62 kDa by sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS–PAGE). The incorporation of gelatin into SDS–PAGE showed that the purified protein presented proteolytic activity in a position corresponding to a molecular mass of 60 kDa. The enzyme was optimally active at 37 °C and pH 6.0 and showed 25% of residual activity at 28 °C for 30 min. The proteinase was inhibited by 1,10-phenanthroline and EDTA, showing that it belonged to the metalloproteinase class. A polyclonal antibody to the leishmanial gp63 reacted strongly with the released C. deanei protease. After Triton X-114 extraction, an enzyme similar to the purified metalloproteinase was detected in aqueous and detergent-rich phases. The detection of an extracellular metalloproteinase produced by C. deanei and some other Crithidia species suggests a potential role of this released enzyme in substrate degradation that may be relevant to the survival of trypanosomatids in the host.Key words: endosymbiont, trypanosomatid, extracellular, proteinase.


2019 ◽  
Vol 114 (2) ◽  
pp. 231 ◽  
Author(s):  
Hussein Jasim SHAREEF

<p>Salicylic acid enhances the flowering process in the plant by creating new proteins under salinity stress. The study was to determine the role of salicylic acid (500 ppm) and potassium nitrate (1500 ppm), on flowering of date palm ‘Sayer’ offshoots under salinity effect. Application of salicylic acid increased the number of clusters, the number of new leaves, the content of carbohydrates, ascorbic acid, indoleacetic acid, zeatin, gibberellin, and abscisic acid significantly under salinity compared with control. Although the measured parameters were the highest in plants treated with salicylic acid, there was no distinction among potassium nitrate treatment under saltwater, and salicylic acid treatment with saltwater. Salicylic acid and potassium nitrate treatment demonstrated some amazing contrasts in protein patterns in light of gel electrophoresis. Plants treated with salicylic acid with fresh water and with saltwater showed five and six protein bands, respectively, that differed in the molecular mass of one polypeptide compared to control with freshwater. However, there was a difference in the molecular mass of two polypeptides compared to control with salt water, which showed six bands. In contrast, potassium nitrate application showed five protein bands, whether with freshwater or with saltwater. The findings could facilitate to elucidate the flowering mechanisms in date palm.<br /><strong></strong></p>


2003 ◽  
Vol 31 (1) ◽  
pp. 87-89 ◽  
Author(s):  
J.D. Scott

Targeting of protein kinases and phosphatases to the cytoskeleton enhances the regulation of many signalling events. Cytoskeletal signalling complexes facilitate this process by optimizing the relay of messages from membrane receptors to specific sites on the actin cytoskeleton. These signals influence fundamental cell properties such as shape, movement and division. Targeting of the cAMP-dependent kinase (protein kinase A) and other enzymes to this compartment is achieved through interaction with A-kinase-anchoring proteins (AKAPs). The present paper discusses recent progress on dissecting the biological role of WAVE1 (Wiskott–Alrich syndrome protein family verprolin homology protein 1), an AKAP that assembles a cytoskeletal transduction complex in response to signals that emanate from the low-molecular-mass GTPase, Rac.


2001 ◽  
Vol 67 (6) ◽  
pp. 2571-2577 ◽  
Author(s):  
Roy D. Sleator ◽  
Cormac G. M. Gahan ◽  
Colin Hill

ABSTRACT Intracellular accumulation of the amino acid proline has previously been linked to the salt tolerance and virulence potential of a number of bacteria. Taking advantage of the proBA mutantEscherichia coli CSH26, we identified a listerialproBA operon coding for enzymes functionally similar to the glutamyl kinase (GK) and glutamylphosphate reductase (GPR) enzyme complex which catalyzes the first and second steps of proline biosynthesis in E. coli. The first gene of the operon,proB, is predicted to encode GK, a 276-residue protein with a calculated molecular mass of 30.03 kDa and pl of 5.2. Distal to the promoter and overlapping the 3′ end of proB by 17 bp isproA, which encodes GPR, a 415-residue protein with a calculated molecular mass of 45.50 kDa (pl 5.3). Using this information, we created a chromosomal deletion mutant by allelic exchange which is auxotrophic for proline. This mutant was used to assess the contribution of proline anabolism to osmotolerance and virulence. While inactivation of proBA had no significant effect on virulence in mouse assays (either perorally or intraperitoneally), growth at low (2 to 4% NaCl) and high (>6% NaCl) salt concentrations in complex media was significantly reduced in the absence of efficient proline synthesis. We conclude that while proline biosynthesis plays little, if any, role in the intracellular life cycle and infectious nature of Listeria monocytogenes, it can play an important role in survival in osmolyte-depleted environments of elevated osmolarity.


1999 ◽  
Vol 27 (9) ◽  
pp. 1999-2005 ◽  
Author(s):  
A. G. Yakovlev ◽  
G. Wang ◽  
B. A. Stoica ◽  
C. M. Simbulan-Rosenthal ◽  
M. E. Smulson ◽  
...  

2010 ◽  
Vol 8 (3) ◽  
pp. 320-326 ◽  
Author(s):  
Adlim Adlim ◽  
Mohamad Abu Bakar

Colloidal gold nanoparticles prepared by employing chitosan as the stabilizer in solvent of methanol-acetic acid solution were stable for months without precipitation. The mole ratio of chitosan-gold ions of 5:1 - 30:1 gave dispersed and fine gold particles in range of 9.4-10.4 nm. Gold reduction in chitosan matrix was faster at higher chitosan concentration, and molar ratio of chi : Au, from 5:1 to 40:1. Higher acidity of acetic acid (pH 2-6) led to faster reduction of gold ions. The intensity of gold metal colloid plasmon band increased at higher concentration of acetic acid. Chitosan functioned both as a stabilizer and a reducing agent for gold ions. Gold colloidal particles immobilized on chitosan coated TiO2 as the solid support gave more dispersed and smaller particles (4.6 nm) compared with gold particles supported on TiO2 without chitosan coating.   Keywords: gold nanoparticles, chitosan, chitosan coated TiO2


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8524
Author(s):  
Guohong Wang ◽  
Jiaxi Li ◽  
Shuxin Xie ◽  
Zhengyuan Zhai ◽  
Yanling Hao

Glycosyltransferases are key enzymes involved in the assembly of repeating units of exopolysaccharides (EPS). A glycosyltransferase generally consists of the N-terminal and the C-terminal domain, however, the functional role of these domains in EPS biosynthesis remains largely unknown. In this study, homologous overexpression was employed to investigate the effects of EpsFN, a truncated form of rhamnosyltransferase EpsF with only the N-terminal domain, on EPS biosynthesis in Streptococcus thermophilus 05-34. Reverse transcription qPCR and Western blotting analysis confirmed the successful expression of epsFN in 05-34 at the transcription and translation level, respectively. Further analysis showed that the monosaccharide composition and yield of EPS were not affected by the overexpression of epsFN, whereas the molecular mass decreased by 5-fold. Accordingly, the transcription levels of genes involved in EPS biosynthesis, including chain-length determination gene epsC, were down-regulated by 5- to 6-fold. These results indicated that the N-terminal domain of EpsF alone could influence the molecular mass of EPS, probably via lowering the concentration of sugar precursors, which may lead to decreased expression of genes responsible for chain-length determination.


2019 ◽  
Vol 65 (9) ◽  
pp. 653-667
Author(s):  
Matej Mat’at’a ◽  
Helena Galádová ◽  
L’udovít Varečka ◽  
Martin Šimkovič

We continued our study of high-molecular-mass proteases (HMMPs) using several strains of the genus Trichoderma, and other filamentous fungi (Botrytis cinerea, Aspergillus niger, Fusarium culmorum, and Penicillium purpurogenum). We found that five Trichoderma strains secreted HMMPs into the media after induction with bovine serum albumin. Botrytis cinerea and F. culmorum secreted proteases in the absence of inducer, while A. niger or P. purpurogenum did not secrete proteolytic activity (PA). The activity of HMMPs secreted by or intracellularly located in Trichoderma spp. represents the predominant part of cellular PA, according to zymogram patterns. This observation allowed the study of HMMPs’ physiological role(s) independent from the secretion. In studying conidiation, we found that illumination significantly stimulated PA in Trichoderma strains. In the T. atroviride IMI 206040 strain, we demonstrated that this stimulation is dependent on the BLR1 and BLR2 receptors. No stimulation of PA was observed when mechanical injury was used as an elicitor of conidiation. Compounds used as inhibitors or activators of conidiation exerted no congruent effects on both PA and conidiation. These results do not favour a direct role of HMMPs in conidiation. Probably, HMMP activity may be involved in the process of the activation of metabolism during vegetative growth, differentiation, and aging-related processes.


Sign in / Sign up

Export Citation Format

Share Document