New possibilities of applications of the Barker quasi-lattice theory. Prediction of gE and hE of binary systems whose one component is formed by n-alkanes

1979 ◽  
Vol 44 (6) ◽  
pp. 1698-1714 ◽  
Author(s):  
Vladimír Dohnal ◽  
Robert Holub ◽  
Jiří Pick

For binary systems of the type an arbitrary component + n-alkane we derived relations, on the basis of the Barker theory and on the basis of the group contribution concept, for predicting gE and hE from one system to another when the n-alkane length is changed. To carry out the prediction it is not necessary to evaluate any adjustable parameters. The developed method was tested using a large number of different systems covering alcohols, amines, ketones, esters, chlorinated derivatives of hydrocarbons, aromatic hydrocarbons and n-alkanes from n-pentane to n-hexadecane. The results of predictions are in very good agreement with experimental data in the cases, when the n-alkanes involved are not longer than n-decane. Systematic regular deviations in hE in the cases, when at least one of n-alkanes involved is longer, can be explained by the presence of orientation effects in the pure longer n-alkanes. The correction suggested by us for these effects improves considerably results obtained. The developed method appears to be suitable for the systematic prediction of excess quantities of systems of the given type and represents an effective test of the Barker theory.

Author(s):  
M. E. Snook ◽  
R. F. Severson ◽  
R. F. Arrendale ◽  
H. C. Higman ◽  
O. T. Chortyk

AbstractThe methyl, multi-methyl, and ethyl derivatives of the polynuclear aromatic hydrocarbons (PAH) of cigarette smoke condensate (CSC) were isolated from the neutrals by silicic acid chromatography, solvent partitioning and gel chromatography. The procedure yielded a relatively pure PAH isolate amenable to further identifications. The multi-alkylated PAH were concentrated in the early gel fractions with parent and higher ring PAH found in subsequent gel fractions. It was shown that CSC is very rich in alkylated PAH, and their successful identification required extensive use of gas and liquid chromatography and ultra-violet and GC - mass spectrometric techniques. High-pressure liquid chromatography (HPLC) separated individual isomers of the alkylated PAH in complex GC peaks. PAH from indene to pentamethylchrysene were found. This report concludes our identification studies on the PAH of CSC and complements our two previous reports in this journal. Collectively, our studies have identified approximately 1000 PAH of cigarette smoke condensate and have led to the development of methods for the routine quantitation of PAH in smalI quantities of cigarette smoke condensate.


1996 ◽  
Vol 31 (3) ◽  
pp. 485-504 ◽  
Author(s):  
Patricia Chow-Fraser ◽  
Barb Crosbie ◽  
Douglas Bryant ◽  
Brian McCarry

Abstract During the summer of 1994, we compared the physical and nutrient characteristics of the three main tributaries of Cootes Paradise: Spencer, Chedoke and Borer’s creeks. On all sampling occasions, concentrations of CHL α and nutrients were always lowest in Borer’s Creek and highest in Chedoke Creek. There were generally 10-fold higher CHL α concentrations and 2 to 10 times higher levels of nitrogen and phosphorus in Chedoke Creek compared with Spencer Creek. Despite this, the light environment did not differ significantly between Spencer and Chedoke creeks because the low algal biomass in Spencer Creek was balanced by a relatively high loading of inorganic sediments from the watershed. Laboratory experiments indicated that sediments from Chedoke Creek released up to 10 µg/g of soluble phosphorus per gram (dry weight) of sediment, compared with only 2 µg/g from Spencer Creek. By contrast, sediment samples from Spencer Creek contained levels of polycyclic aromatic hydrocarbon that were as high as or higher than those from Chedoke Creek, and much higher than those found in Borer’s Creek. The distribution of normalized PAH concentrations suggests a common source of PAHs in all three tributaries, most likely automobile exhaust, since there were high concentrations of fluoranthene and pyrene, both of which are derivatives of engine combustion.


1980 ◽  
Vol 45 (7) ◽  
pp. 1920-1927 ◽  
Author(s):  
Jaroslav Nývlt

Relations were derived comparing the steady supersaturation in the continuous MSMPR and/or bath crystallisers with the stirred suspension having the maximum supersaturation corresponding to the boundary of metastable region at the given conditions. The derived relations include only the quantities used for the system constant BN from the corresponding crystallisation experiments. By use of supersaturation in the crystalliser obtained by the described method it is possible to evaluate the kinetic constants of nucleation and growth. However, it is not possible to expect a high accuracy of the data so obtained.


2002 ◽  
Vol 9 (3) ◽  
pp. 405-412
Author(s):  
C. Belingeri ◽  
B. Germano

Abstract The Radon technique is applied in order to recover a quadrature rule based on Appel polynomials and the so called Appel numbers. The relevant formula generalizes both the Euler-MacLaurin quadrature rule and a similar rule using Euler (instead of Bernoulli) numbers and even (instead of odd) derivatives of the given function at the endpoints of the considered interval. In the general case, the remainder term is expressed in terms of Appel numbers, and all derivatives appear. A numerical example is also included.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1373
Author(s):  
Yueh-Yu Lin ◽  
Felix Schleifer ◽  
Markus Holzinger ◽  
Na Ta ◽  
Birgit Skrotzki ◽  
...  

The effectiveness of the mechanism of precipitation strengthening in metallic alloys depends on the shapes of the precipitates. Two different material systems are considered: tetragonal γ′′ precipitates in Ni-based alloys and tetragonal θ′ precipitates in Al-Cu-alloys. The shape formation and evolution of the tetragonally misfitting precipitates was investigated by means of experiments and phase-field simulations. We employed the method of invariant moments for the consistent shape quantification of precipitates obtained from the simulation as well as those obtained from the experiment. Two well-defined shape-quantities are proposed: (i) a generalized measure for the particles aspect ratio and (ii) the normalized λ2, as a measure for shape deviations from an ideal ellipse of the given aspect ratio. Considering the size dependence of the aspect ratio of γ′′ precipitates, we find good agreement between the simulation results and the experiment. Further, the precipitates’ in-plane shape is defined as the central 2D cut through the 3D particle in a plane normal to the tetragonal c-axes of the precipitate. The experimentally observed in-plane shapes of γ′′-precipitates can be quantitatively reproduced by the phase-field model.


2021 ◽  
Vol 63 (9) ◽  
pp. 1415
Author(s):  
М.Н. Магомедов

Based on the RP-model of a nanocrystal, an analytical method is developed for calculating the specific surface energy (), isochoric and isobaric derivatives of the  function with respect to temperature, and isothermal derivatives of the  function with respect to pressure and density. It is shown that the method is applicable for both macro-and nanocrystals with a given number of atoms and a certain surface shape. To implement this method, the parameters of the Mie–Lennard-Jones paired interatomic potential were determined in a self-consistent way based on the thermoelastic properties of the crystal. The method was tested on macrocrystals of 15 single-component substances: for 8-FCC crystals (Cu, Ag, Au, Al, Ni, Rh, Pd, Pt) and for 7-BCC crystals (Fe, V, Nb, Ta, Cr, Mo, W). The calculations were made at different temperatures and showed good agreement with the experimental data. Using the example of FCC-Rh, the change in surface properties with a decrease of the nanocrystal size along the isotherms of 10, 300, 2000 K is studied. It is shown that at high pressures and low temperatures, there is a region where the  function increases at an isomorphic-isothermal-isobaric decrease in the nanocrystal size. As the temperature increases, this area disappears.


Sign in / Sign up

Export Citation Format

Share Document