Distinguishing between outer-sphere and inner-sphere redox mechanism on the basis of the solvent effect

1980 ◽  
Vol 45 (12) ◽  
pp. 3266-3269 ◽  
Author(s):  
Ľudovít Treindl ◽  
Ľubica Adamčíková

During kinetic studies of redox reactions of U3+ ions, we paid special attention to the influence of water-alcohol binary mixtures on the reaction rate. Kinetic data suggest that the water-tert-butanol system is of a high diagnostic value. The dependence of log kexp on the molar fraction of tert-butanol passes through a characteristic minimum in the case of an outer-sphere mechanism, whereas in the other case it decreases monotonously.

1979 ◽  
Vol 44 (2) ◽  
pp. 401-405 ◽  
Author(s):  
Ľubica Adamčíková ◽  
Ľudovít Treindl

The kinetics and mechanism of the redox reactions of U3+ ions with mono- and dichloroacetic acids were studied. The influence of pH was observed mainly in the second case and led to the determination of the rate constants and activation parameters corresponding to two parallel steps, namely oxidation of U3+ with CHCl2COO- ions and oxidation of U3+ with CHCl2.COOH molecules. The influence of binary mixtures of water with methanol, ethanol, isopropanol, or tert-butenol on the reaction rate was followed. Increasing alcohol concentration influences the rate constant not only through changing dielectric constant and solvation of the reactants but also through a change of the solvent structure which plays a role in reactions with an outer sphere mechanism of the electron transfer.


2020 ◽  
Vol 16 (5) ◽  
pp. 50-57
Author(s):  
MUKESH KUMAR JHA ◽  
◽  
AVINASH KUMAR ◽  

The kinetics and mechanism of oxidation of Mandelic acid with Bi(V) has been investigated in phosphoric acid medium. The order with respect to substrate and oxidant each is one. The reaction rate is independent of [H+] ion as well as [Bi(III)]. The reaction rate decreases with increasing ionic strength indicating reactive species of opposite charge. The simple rate law explained all the experimental observations. The mode of electron transfer from the substrate to Bi(V) has been indicated is a bridged outer sphere mechanism.


RSC Advances ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 21359-21366
Author(s):  
Debabrata Chatterjee ◽  
Marta Chrzanowska ◽  
Anna Katafias ◽  
Maria Oszajca ◽  
Rudi van Eldik

[RuII(edta)(L)]2–, where edta4– =ethylenediaminetetraacetate; L = pyrazine (pz) and H2O, can reduce molecular oxygen sequentially to hydrogen peroxide and further to water by involving both outer-sphere and inner-sphere electron transfer processes.


2015 ◽  
Vol 713-715 ◽  
pp. 2789-2792
Author(s):  
Huan Yan Xu ◽  
Xue Li ◽  
Yan Li ◽  
Ping Li ◽  
Wei Chao Liu

An active dye, Methyl Orange (MO) was employed as the target pollutant to evaluate the photocatalytic activity of TiO2/schorl composite and the kinetics and thermodynamics of this process was emphasized in this work. Langmuir–Hinshelwood kinetic model was employed for the kinetic studies and the results revealed that the process of MO photocatalytic discoloration by TiO2/schorl composite followed one order reaction kinetic equation under different conditions. The reaction rate constant (k) increased with initial MO concentration decreasing. When the catalyst dosage or solution pH increased,kvalues increased and then decreased. The possible reasons for these phenomena were discussed. Finally, the thermodynamic parameters ΔG, ΔH, ΔSwere obtained by the classical Van't Hoff equation.


Nanoscale ◽  
2018 ◽  
Vol 10 (45) ◽  
pp. 21041-21045 ◽  
Author(s):  
Xiao-Yu Zheng ◽  
Juan Pellico ◽  
Alexandr A. Khrapitchev ◽  
Nicola R. Sibson ◽  
Jason J. Davis

Integrating Dy-DOTA motifs into mesoporous silica nanoparticle scaffolds significantly amplifies the ultrahigh field T2 relaxivity via a Curie outer-sphere mechanism.


2011 ◽  
Vol 383-390 ◽  
pp. 2945-2950 ◽  
Author(s):  
Jie Zhang ◽  
Shi Long He ◽  
Mei Feng Hou ◽  
Li Ping Wang ◽  
Li Jiang Tian

The kinetics of TBBPA degradation by ozonation in semi-batch reactor was studied. The reaction rate constants of TBBPA with O3 and •OH were measured by means of direct ozone attack and competition kinetics, and the values of which were 6.10 l/(mol•s), 4.8×109 l/(mol•s), respectively. Results of kinetic studies showed that TBBPA degradation by ozonation under the different conditions tested followed the pseudo-first-order. The values of apparent rate constant of TBBPA degradation increased with the increase of ozone dosage and pH, but decreased with the increase of initial TBBPA concentration.


Sign in / Sign up

Export Citation Format

Share Document