Stereochemistry of organic ions in the gas phase: A review

1987 ◽  
Vol 52 (8) ◽  
pp. 1928-1984 ◽  
Author(s):  
František Tureček

The stereochemistry of organic ions in the gas phase can be regarded from two different points of view: (i) stereoselectivity in ion formation and (ii) stereospecifity of ion fragmentations. Fast ionization by electron or photon impact shows little stereoselection. Differences in the ionization energies and cross sections between stereoisomers are generally small, save for a few exceptions. Proton or larger ion transfer, as employed in chemical ionization mass spectrometry, gives more possibilities for stereoselection. Bi- or polyfunctional molecules can capture the proton in a hydrogen-bond stabilized [M + H]+ ion, which is feasible only with a favourable spatial orientation of the chelating groups. Adduct ions [M + R]+ can also be formed stereoselectively. The use of a chiral ionizing medium adds a new dimension, since enantiomers can be distinguished, or even independently identified. The stereochemistry of even-electron cations in the gas-phase is most pronounced with polyfunctional species. The stereochemical behaviour is ruled by two reactivity principles, i.e. the geometry-dependent stabilization of [M + H]+ ions by chelation, and the anchimeric assistance by neighbouring groups in elimination of small molecules (water, ammonia, alcohols, acetic acid, etc.). The stereochemistry of odd-electron cations seems to be governed by three principles, i.e. the thermochemistry of decompositions proceeding with simple-bond cleavage, stereoelectronic effects on bond dissociations in the presence of a control orbital, and long-range interactions resulting in transfer of a hydrogen atom or a larger group. All these three reaction classes have limited areas of application. The stereochemistry of even-electron anions has been developing rapidly. The reactivity of gas-phase anions finds numerous analogies in their chemistry in solution, e.g. hydride transfer reactions and nucleophilic substitution. The applications of mass spectrometry to configurational assignment and structure elucidation remain restricted to selected classes of organic compounds.

2010 ◽  
Vol 10 (12) ◽  
pp. 30539-30568
Author(s):  
T. Kurtén ◽  
T. Petäjä ◽  
J. Smith ◽  
I. K. Ortega ◽  
M. Sipilä ◽  
...  

Abstract. The state-of-the art method for measuring atmospheric gas-phase sulfuric acid is chemical ionization mass spectrometry (CIMS) based on nitrate reagent ions. Using computed proton affinities and reaction thermodynamics for the relevant charging reactions, we show that in the presence of strong bases such as amines, which tend to cluster with the sulfuric acid molecules, a significant fraction of the total gas-phase sulfuric acid may not be measured by a CIMS instrument. If this is the case, this effect has to be taken into account in the interpretation of atmospheric sulfuric acid measurement data, as well as in intercomparison of different CIMS instruments, which likely have different susceptibilities to amine-sulfuric acid clustering.


2016 ◽  
Vol 16 (22) ◽  
pp. 14409-14420 ◽  
Author(s):  
Neha Sareen ◽  
Annmarie G. Carlton ◽  
Jason D. Surratt ◽  
Avram Gold ◽  
Ben Lee ◽  
...  

Abstract. Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols), leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere into water at Brent, Alabama, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Hydroxyl (OH⚫) radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92 to 179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS). Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) spectra and tandem MS (MS–MS) fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (as salts and complexes). Thus, formation of pyruvate/oxalate suggests the potential for aqueous processing of these ambient mixtures to form SOAAQ.


2019 ◽  
Vol 47 (14) ◽  
pp. 7223-7234 ◽  
Author(s):  
Elisabeth Fuchs ◽  
Christoph Falschlunger ◽  
Ronald Micura ◽  
Kathrin Breuker

Abstract The catalytic strategies of small self-cleaving ribozymes often involve interactions between nucleobases and the ribonucleic acid (RNA) backbone. Here we show that multiply protonated, gaseous RNA has an intrinsic preference for the formation of ionic hydrogen bonds between adenine protonated at N3 and the phosphodiester backbone moiety on its 5′-side that facilitates preferential phosphodiester backbone bond cleavage upon vibrational excitation by low-energy collisionally activated dissociation. Removal of the basic N3 site by deaza-modification of adenine was found to abrogate preferential phosphodiester backbone bond cleavage. No such effects were observed for N1 or N7 of adenine. Importantly, we found that the pH of the solution used for generation of the multiply protonated, gaseous RNA ions by electrospray ionization affects phosphodiester backbone bond cleavage next to adenine, which implies that the protonation patterns in solution are at least in part preserved during and after transfer into the gas phase. Our study suggests that interactions between protonated adenine and phosphodiester moieties of RNA may play a more important mechanistic role in biological processes than considered until now.


Sign in / Sign up

Export Citation Format

Share Document