Optimal catalyst activity distribution in fixed-bed reactor with catalyst deactivation

1989 ◽  
Vol 54 (2) ◽  
pp. 375-387 ◽  
Author(s):  
Jozef Markoš ◽  
Alena Brunovská

In this paper the influence of the active catalyst location in a pellet on fixed-bed catalytic reactor performance is described. The optimal activity distribution as a function of an economic parameter (ratio of product and catalyst costs), Thiele modulus and Damkohler number is estimated.

Author(s):  
F. A. Marchesini ◽  
G. Mendow ◽  
N. P. Picard ◽  
F. M. Zoppas ◽  
V. S. Aghemo ◽  
...  

Abstract The ground water (GW) is a real sample of water which contains nitrates (81 mg/L), carbonates and sulphates. This sample was treated by catalytic reduction in a bubble column fixed-bed reactor. The reaction conditions were room temperature and atmospheric pressure, and hydrogen was used as reducing agent. A comparison between the catalytic activity of Pd,In/SiO2 and Pd,In/Al2O3 catalysts was performed, giving the latter the best results regarding the nitrate conversion and the former the selectivity to nitrogen. Synthetic water containing nitrates (SW) and the groundwater (GW) with high salinity (81 mg/L nitrates) and humic acid content were treated in these conditions using HCl and CO2 as acidifiers. When the SW was acidified with CO2 at an H2 flow (2.17 mL/min), more than 50 % of conversion was obtained with an ammonia and nitrite concentrations of 0.44 and 0.92 ppm respectively. These results reached the level established by the WHO and the USEPA. However, both Pd,In/SiO2 and Pd,In/Al2O3 catalysts showed evidence of some deactivation process. This deactivation was higher in the GW sample, possibly due to the presence of Ca+2 and Mg+2 cations that precipitate on the active sites, and/or the presence of humic acids. The characterization studies indicated that, after the reaction, the composition of the metal phases was modified, specifically on their surface. As the catalyst activity is related to surface ratio Pd/In, a relative increase in the concentration of Pd decreases the activity and causes changes in the selectivity to N2. Some sintering of the metal particles was also observed to contribute to catalyst deactivation. Nevertheless, promising results were obtained since a high water volume could be treated with a relatively low amount of low metal loading catalysts.


2020 ◽  
Vol 9 (1) ◽  
pp. 107-112 ◽  
Author(s):  
I. Istadi ◽  
Teguh Riyanto ◽  
Luqman Buchori ◽  
Didi Dwi Anggoro ◽  
Roni Ade Saputra ◽  
...  

Plasma-assisted catalytic cracking is an attractive method for producing biofuels from vegetable oil. This paper studied the effect of reactor temperature on the performance of plasma-assisted catalytic cracking of palm oil into biofuels. The cracking process was conducted in a Dielectric Barrier Discharge (DBD)-type plasma reactor with the presence of spent RFCC catalyst. The reactor temperature was varied at 400, 450, and 500 ºC. The liquid fuel product was analyzed using a gas chromatography-mass spectrometry (GC-MS) to determine the compositions. Result showed that the presenceof plasma and catalytic role can enhance the reactor performance so that the selectivity of the short-chain hydrocarbon produced increases. The selectivity of gasoline, kerosene, and diesel range fuels over the plasma-catalytic reactor were 16.43%, 52.74% and 21.25%, respectively, while the selectivity of gasoline, kerosene and diesel range fuels over a conventional fixed bed reactor was 12.07%, 39.07%, and 45.11%, respectively. The increasing reactor temperature led to enhanced catalytic role of cracking reaction,particularly directing the reaction to the shorter hydrocarbon range. The reactor temperature dependence on the liquid product components distribution over the plasma-catalytic reactor was also studied. The aromatic and oxygenated compounds increased with the reactor temperature.©2020. CBIORE-IJRED. All rights reserved


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1374
Author(s):  
Andreas Brune ◽  
Andreas Seidel-Morgenstern ◽  
Christof Hamel

This study intends to provide insights into various aspects related to the reaction kinetics of the VOx catalyzed propane dehydrogenation including main and side reactions and, in particular, catalyst deactivation and regeneration, which can be hardly found in combination in current literature. To kinetically describe the complex reaction network, a reduced model was fitted to lab scale experiments performed in a fixed bed reactor. Additionally, thermogravimetric analysis (TGA) was applied to investigate the coking behavior of the catalyst under defined conditions considering propane and propene as precursors for coke formation. Propene was identified to be the main coke precursor, which agrees with results of experiments using a segmented fixed bed reactor (FBR). A mechanistic multilayer-monolayer coke growth model was developed to mathematically describe the catalyst coking. Samples from long-term deactivation experiments in an FBR were used for regeneration experiments with oxygen to gasify the coke deposits in a TGA. A power law approach was able to describe the regeneration behavior well. Finally, the results of periodic experiments consisting of several deactivation and regeneration cycles verified the long-term stability of the catalyst and confirmed the validity of the derived and parametrized kinetic models for deactivation and regeneration, which will allow model-based process development and optimization.


1986 ◽  
Vol 25 (3) ◽  
pp. 313-321 ◽  
Author(s):  
Massimo Morbidelli ◽  
Alberto Servida ◽  
Sergio Carra ◽  
Arvind Varma

Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 678
Author(s):  
Clara López-Aguado ◽  
Marta Paniagua ◽  
Juan A. Melero ◽  
Jose Iglesias ◽  
Pablo Juárez ◽  
...  

The one-pot conversion of biomass-derived platform molecules such as levulinic acid (LA) and furfural (FAL) into γ-valerolactone (GVL) is challenging because of the need for adequate multi-functional catalysts and high-pressure gaseous hydrogen. As a more sustainable alternative, here we describe the transfer hydrogenation of LA to GVL using isopropanol as a hydrogen donor over a Zr-modified beta zeolite catalyst in a continuous fixed-bed reactor. A stable sustained production of GVL was achieved from the levulinic acid, with both high LA conversion (ca. 95%) and GVL yield (ca. 90%), for over at least 20 days in continuous operation at 170 °C. Importantly, the small decay in activity can be advantageously overcome by the means of a simple in situ thermal regeneration in the air atmosphere, leading to a complete recovery of the catalyst activity. Key to this outstanding result is the use of a Zr-modified dealuminated beta zeolite with a tailored Lewis/Brønsted acid sites ratio, which can synergistically catalyze the tandem steps of hydrogen transfer and acid-catalyzed transformations, leading to such a successful and stable production of GVL from LA.


1986 ◽  
Vol 19 (15) ◽  
pp. 267-272 ◽  
Author(s):  
L. Goldschmidt ◽  
L. Hallager ◽  
S.B. Jorgensen

Author(s):  
Yishuang Wang ◽  
Mingqiang Chen ◽  
Tian Liang ◽  
Jie Yang ◽  
Zhonglian Yang ◽  
...  

In this research, catalytic steam reforming acetic acid derived from the aqueous portion of bio-oil for hydrogen production was investigated by using different Ni/ATC (Attapulgite Clay) catalysts prepared by precipitation, impregnation and mechanical blending methods. The fresh and reduced catalysts were characterized by XRD, N2 adsorption-desorption, TEM and H2-TPR. The comprehensive results demonstrated that the interaction between active metallic Ni and ATC carrier was significantly improved in Ni/ATC catalyst prepared by precipitation method, and in which the mean Ni particle size was the smallest (~13 nm) resulted in the highest metal dispersion (7.5%). The catalytic performance of the three catalysts was evaluated through the process of steam reforming of acetic acid in a fixed-bed reactor under atmospheric pressure at two different temperatures, such as 550 ℃ and 650 ℃. Results showed that the Ni/ATC (PM-N/ATC) prepared by precipitation method, achieved the highest H2 yield of ~82% and little lower acetic acid conversion efficiency of ~85% than that (~95%) of Ni/ATC (IM-NATC) prepared by impregnation method. In addition, the deactivation catalysts after reaction for 4 h were analyzed by XRD, TGA-DTG and TEM, which demonstrated that the catalyst deactivation was not caused by the amount of carbon deposition, but owed to the significant agglomeration and sintering of Ni particles in the carrier.


Sign in / Sign up

Export Citation Format

Share Document