Sterically Crowded Heterocycles. X. A New Mechanistic Approach to the Ferricyanide Oxidation of 4,6'-Disubstituted 1-(Pyridin-2'-yl)-2,6-diphenylpyridinium Salts

1999 ◽  
Vol 64 (8) ◽  
pp. 1274-1294 ◽  
Author(s):  
Radek Pohl ◽  
Stanislav Böhm ◽  
Josef Kuthan

The oxidations of the title perchlorates, bearing the sterically diverse 6'-substituents (H, Me, Et, i-Pr, n-Bu, t-Bu and Ph) in two series with the same 4-substituents (Ph and t-Bu) lead to pairs of isomeric 3',5-disubstituted (Z)-1'-phenyl-3'-(2-phenylimidazo[1,2-a]pyridin-3-yl)prop-2'- en-1'-ones and 3,6'-disubstituted [5-phenyl-1-(6'-pyridin-2'-yl)-1H-pyrrol-2-yl](phenyl)methanones except where the both variable substituents are t-Bu and then only pyrrolic product is formed. Considering steric interactions of the substituents in some intermediate and/or transition states a multistep mechanism for the oxidative transformation is proposed and supported by model PM3-PECI calculations of some radical intermediates.

2002 ◽  
Vol 67 (10) ◽  
pp. 1517-1532 ◽  
Author(s):  
William R. Dolbier ◽  
Keith W. Palmer ◽  
Feng Tian ◽  
Piotr Fiedorow ◽  
Andrzej Zaganiaczyk ◽  
...  

Fluorine atoms incorporated into 1,5-hexadiene molecule should influence the kinetic as well as the thermodynamic parameters of [3,3] sigmatropic rearrangement (Cope rearrangement). Within few decades is has been documented that this transformation proceeds in a concerted manner, rather than stepwise with some radical intermediates involved. Few new terminally fluorinated 1,5-hexadienes (compounds 3, 5A, 7, 9 and 5B) have been synthesized. The activation parameters of rearrangement have been determined and compared with those known for hydrocarbon analogues. While systems developing chair-like transition states (compounds 3 and 5) showed close similarity with hydrocarbon analogues (compound 1), those developing boat-like transition states (compounds 7, 9 and 5B) may proceed through radical stepwise mechanism. Computational studies of the transition states were carried out, showing that only ab initio methods (MP2 and especially DFT) can give approximate correlation with experimental data, whereas in the case of hydrocarbon analogues even simple semiempirical methods (AM1) were reliable enough to reproduce experimental results.


1974 ◽  
Vol 75 (4) ◽  
pp. 793-800
Author(s):  
A. O. Sogbesan ◽  
O. A. Dada ◽  
B. Kwaku Adadevoh

ABSTRACT The 17β-hydroxysteroid dehydrogenase activity in intact erythrocytes of Nigerian patients, in particular with regard to haemoglobin genotypes and G6PD* activity was studied. The G6PD activity of the erythrocyte did not affect the oxidative transformation of testosterone to androstenedione and of oestradiol to oestrone. The reduction (reverse transformation) was inhibited in G6PD-deficient erythrocytes but this inhibition was offset by the addition of 0.025 m glucose to the incubation medium. The per cent oxidation transformation of testosterone was higher in Hb-AA than in Hb-SS erythrocytes. It is suggested that the differences may be a result of either lower enzyme activity in the Hb-SS erythrocytes or of differences in the uptake and possibly binding of sex steroids by intact Hb-SS and Hb-AA erythrocytes.


2019 ◽  
Author(s):  
Marharyta V. Laktsevich-Iskryk ◽  
Nastassia A. Varabyeva ◽  
Volha V. Kazlova ◽  
Vladimir N. Zhabinskii ◽  
Vladimir A. Khripach ◽  
...  

In this article, we report a photocatalytic protocol for the isomerization of 1,2-disubstituted cyclopropanols to linear ketones. The reaction proceeds <i>via</i> radical intermediates and tolerates various functional groups.


2019 ◽  
Author(s):  
Marharyta V. Laktsevich-Iskryk ◽  
Nastassia A. Varabyeva ◽  
Volha V. Kazlova ◽  
Vladimir N. Zhabinskii ◽  
Vladimir A. Khripach ◽  
...  

In this article, we report a photocatalytic protocol for the isomerization of 1,2-disubstituted cyclopropanols to linear ketones. The reaction proceeds <i>via</i> radical intermediates and tolerates various functional groups.


2020 ◽  
Author(s):  
Chet Tyrol ◽  
Nang Yone ◽  
Connor Gallin ◽  
Jeffery Byers

By using an iron-based catalyst, access to enantioenriched 1,1-diarylakanes was enabled through an enantioselective Suzuki-Miyaura crosscoupling reaction. The combination of a chiral cyanobis(oxazoline) ligand framework and 1,3,5-trimethoxybenzene additive were essential to afford high yields and enantioselectivities in cross-coupling reactions between unactivated aryl boronic esters and a variety of benzylic chlorides, including challenging ortho-substituted benzylic chloride substrates. Mechanistic investigations implicate a stereoconvergent pathway involving carbon-centered radical intermediates.


2018 ◽  
Author(s):  
Patrick Moon ◽  
Zhongyu Wie ◽  
Rylan Lundgren

The stability and wide availability of carboxylic acids make them valuable reagents in chemical synthesis. Most transition metal catalyzed processes using carboxylic acid substrates are initiated by a decarboxylation event that generates reactive carbanion or radical intermediates. Developing enantioselective methodologies relying on these principles can be challenging, as highly reactive species tend to react indiscriminately without selectivity. Furthermore, anionic or radical intermediates generated from decarboxylation can be incompatible with protic and electrophilic functionality, or groups that undergo trapping with radicals. We demonstrate that metal-catalyzed enantioselective benzylation reactions of allylic electrophiles can occur directly from aryl acetic acids. The reaction proceeds via a pathway in which decarboxylation is the terminal event, occurring after stereoselective carbon–carbon bond formation. The mechanistic features of the process enable enantioselective benzylation without the generation of a highly basic nucleophile. Thus, the process has broad functional group compatibility that would not be possible employing established protocols.<br>


2019 ◽  
Author(s):  
Melanie Short ◽  
Mina Shehata ◽  
Matthew Sanders ◽  
Jennifer Roizen

Sulfamides guide intermolecular chlorine transfer to gamma-C(sp<sup>3</sup>) centers. This unusual position-selectivity arises because accessed sulfamidyl radical intermediates engage in otherwise rare 1,6-hydrogen-atom transfer processes. The disclosed chlorine-transfer reaction relies on a light-initiated radical chain-propagation mechanism to oxidize C(sp<sup>3</sup>)-H bonds.


2018 ◽  
Author(s):  
Sandepan Maity ◽  
Robert Flowers

Despite the broad utility and application of SmI<sub>2</sub>in synthesis, the reagent is used in stoichiometric amounts and has a high molecular weight, resulting in a large amount of material being used for reactions requiring one or more equivalents of electrons. We report mechanistic studies on catalytic reactions of Sm(II) employing a terminal magnesium reductant and trimethyl silyl chloride in concert with a non-coordinating proton donor source. Reactions using this approach permitted reductions with as little as 1 mol% Sm. The mechanistic approach enabled catalysis employing HMPA as a ligand, facilitating the development of catalytic Sm(II) 5-<i>exo</i>-<i>trig </i>ketyl olefin cyclization reactions.


2019 ◽  
Author(s):  
Melanie Short ◽  
Mina Shehata ◽  
Matthew Sanders ◽  
Jennifer Roizen

Sulfamides guide intermolecular chlorine transfer to gamma-C(sp<sup>3</sup>) centers. This unusual position-selectivity arises because accessed sulfamidyl radical intermediates engage in otherwise rare 1,6-hydrogen-atom transfer processes. The disclosed chlorine-transfer reaction relies on a light-initiated radical chain-propagation mechanism to oxidize C(sp<sup>3</sup>)-H bonds.


Sign in / Sign up

Export Citation Format

Share Document