Kinetics of iron(III) hydrolysis and precipitation in aqueous glycine solutions assessed by voltammetry

2009 ◽  
Vol 74 (10) ◽  
pp. 1531-1542 ◽  
Author(s):  
Vlado Cuculić ◽  
Ivanka Pižeta

The kinetics of iron(III) hydrolysis and precipitation in aqueous glycine solutions were studied by cathodic voltammetry with a mercury drop electrode. The kinetics was controlled by changing ionic strength (I), pH and glycine concentration. Voltammetric measurements clearly showed formation and dissociation of a soluble Fe(III)–glycine complex, formation of iron(III) hydroxide and its precipitation. The rate constants of iron(III) hydroxide precipitation were assessed. The precipitation is first-order with respect to dissolved inorganic iron(III). The calculated rate constants of iron(III) precipitation varied from 0.18 × 10–5 s–1 (at 0.2 M total glycine, pH 7.30, I = 0.6 mol dm–3) to 2.22 × 10–3 s–1 (at 0.1 M total glycine, pH 7.30, I = 0.2 mol dm–3). At 0.5 M total glycine and I = 0.6 mol dm–3, the iron(III) precipitation was not observed.

1988 ◽  
Vol 66 (10) ◽  
pp. 2524-2531 ◽  
Author(s):  
John W. Bunting ◽  
Mark A. Luscher

The kinetics of the reduction of the 3-cyano-1-methylquinolinium, 4-cyano-2-methylisoquinolinium, and 2-methyl-5-nitro-isoquinolinium cations by 9,10-dihydro-10-methylacridine, and also the reduction of these same three cations as well as the 10-methylacridinium cation by 5,6-dihydro-5-methylphenanthridine, have been investigated in 20% acetonitrile – 80% water, ionic strength 1.0, 25 °C. The reactions of the 2-methyl-5-nitroisoquinolinium cation with both reductants, and also of the 4-cyano-2-methylisoquinolinium cation with 9,10-dihydro-10-methylacridine, display kinetic saturation effects in the pseudo-first-order rate constants as a function of heterocyclic cation concentration. These effects are consistent with the formation of 1:1 association complexes between hydride donor and acceptor prior to the rate-determining step of the reduction. The second-order rate constants for these reactions, and also those for analogous heterocyclic cation reductions by 1,4-dihydronicotinamides, show systematic variations as a function of the hydride donor and acceptor species.


1986 ◽  
Vol 64 (12) ◽  
pp. 2301-2304 ◽  
Author(s):  
Guillermo López-Cueto ◽  
Carlos Ubide

When potassium hexacyanomanganate(III) dissolves in acidic solution it rapidly disproportionates into hexacyanomanganate(IV) and Mn(II). Hexacyanomanganate(IV) then slowly decomposes to yield Mn(II) and (CN)2. Kinetics of the latter reaction has been studied. The reaction is found to be first order with respect to [Formula: see text], H+, and Mn(II) concentrations and the experimental rate law has the form v = kobs[Mn(IV)] = (ka + kb[H+] + kc[Mn(II)])[Mn(IV)]. At 40 °C and ionic strength 2.0, ka, kb, and kc values are (1.78 ± 0.01) × 10−4 s−1, (5.97 ± 0.05) × 10−5 s−1 M−1, and (3.40 ± 0.18) × 10−3 s−1 M−1, respectively. A mechanism with three parallel pathways is proposed, the deduced rate law being similar to the experimental one. Activation parameters, ΔH≠and ΔS≠ for the rate constants ka, kb, and kc are also reported.


1994 ◽  
Vol 30 (11) ◽  
pp. 143-146
Author(s):  
Ronald D. Neufeld ◽  
Christopher A. Badali ◽  
Dennis Powers ◽  
Christopher Carson

A two step operation is proposed for the biodegradation of low concentrations (< 10 mg/L) of BETX substances in an up flow submerged biotower configuration. Step 1 involves growth of a lush biofilm using benzoic acid in a batch mode. Step 2 involves a longer term biological transformation of BETX. Kinetics of biotransformations are modeled using first order assumptions, with rate constants being a function of benzoic acid dosages used in Step 1. A calibrated computer model is developed and presented to predict the degree of transformation and biomass level throughout the tower under a variety of inlet and design operational conditions.


1981 ◽  
Vol 46 (5) ◽  
pp. 1229-1236 ◽  
Author(s):  
Jan Balej ◽  
Milada Thumová

The rate of hydrolysis of S2O82- ions in acidic medium to peroxomonosulphuric acid was measured at 20 and 30 °C. The composition of the starting solution corresponded to the anolyte flowing out from an electrolyser for production of this acid or its ammonium salt at various degrees of conversion and starting molar ratios of sulphuric acid to ammonium sulphate. The measured data served to calculate the rate constants at both temperatures on the basis of the earlier proposed mechanism of the hydrolysis, and their dependence on the ionic strength was studied.


1992 ◽  
Vol 57 (7) ◽  
pp. 1451-1458 ◽  
Author(s):  
Refat M. Hassan

The kinetics of oxidation of arsenic(III) by hexachloroiridate(IV) at lower acid concentrations and at constant ionic strength of 1.0 mol dm-3 have been investigated spectrophotometrically. A first-order reaction in [IrCl62-] and fractional order with respect to arsenic(III) have been observed. A kinetic evidence for the formation of an intermediate complex between the hydrolyzed arsenic(III) species and the oxidant was presented. The results showed that decreasing the [H+] is accompanied by an appreciable acceleration of the rate of oxidation. The activation parameters have been evaluated and a mechanism consistent with the kinetic results was suggested.


1979 ◽  
Vol 32 (9) ◽  
pp. 1905 ◽  
Author(s):  
AF Godfrey ◽  
JK Beattie

The oxidation of butan-1-ol by ferricyanide ion in alkaline aqueous solution is catalysed by solutions of ruthenium trichloride hydrate. The kinetics of the reaction has been reinvestigated and the data are consistent with the rate law -d[FeIII]/dt = [Ru](2k1k2 [BuOH] [FeIII])/(2k1 [BuOH]+k2 [FeIII]) This rate law is interpreted by a mechanism involving oxidation of butanol by the catalyst (k1) followed by reoxidation of the catalyst by ferricyanide (k2). The non-linear dependence of the rate on the butanol concentration is ascribed to the rate-determining, butanol-independent reoxidation of the catalyst, rather than to the saturation of complex formation between butanol and the catalyst as previously claimed. Absolute values of the rate constants could not be determined, because some of the ruthenium precipitates from basic solution. With K3RuCl6 as the source of a homogeneous catalyst solution, estimates were obtained at 30�0�C of k1 = 191. mol-1 s-1 and k2 = 1�4 × 103 l. mol-1 s-1.


2021 ◽  
Author(s):  
◽  
Asokamali Siriwardena

<p>The reaction of bis-(diaminoethane)nickel(II) chloride, ([Ni(en)2]Cl2 in methanol with formaldehyde and nitroethane in the presence of triethylamine proceeds readily to produce (6, 13-dimethyl-6, 13-dinitro-1, 4, 8, 11-tetraazacyclotetradecane)nickel(II) chloride, [Ni(dini)] - Cl2. Reduction of the nitro groups of this compound by catalytic hydrogenation yields three isomers of the pendant arm macrocyclic complex (6, 13-diamino-6, 13-dimethyl-1, 4, 8, 11-tetraazachyclotetradecane)nickel(II) chloride, designated a-, b- and c-[Ni(diam)]Cl2. These were separated by fractional crystallization. The aisomer was observed to isomerizes slowly in solution to the b- form. A parallel dissociation reaction of the a- isomer was also observed. The demetallation of a- and b- isomers of the diam complex of nickel by reaction with cyanide or concentrated acid at 140 degrees C produces the macrocycle meso-(6, 13-diamino-6, 13-dimethyl-1, 4, 8, 11-tetraazacyclotetra-decane), diam. A variety of hexamine, pentamine and tetramine complexes of diam with nickel(II), copper(II), cobalt(II) and (III), chromium(III), palladium(II), rhodium(III), zinc(II) and cadmium(II) were prepared. Hexamine and tetramine forms of labile metal complexes could be rapidly and reversibly interconverted by altering the pH. The hexamine cobalt(III) cation, [Co(diam)]3+ was by far the most inert of the prepared cobalt(III) complexes, remaining unaffected in hot acidic solutions. In contrast, a single pendant arm of the hexamine [Cr(diam)]3+ cation could be dissociated in acid. (Two possibly triamine complexes of lead were also prepared). These compounds were characterized by elemental analysis, magnetic measurements, electronic, infrared, 1H and 13C nuclear magnetic resonance spectra. The pendant arm protonation constants (log K) of diam and selected complexes of nickel, copper and palladium were calculated from potentiometric titration measurements at 25 degrees C. The log K values for diam at 25 degrees C (I = 0.1 M NaclO4) were 11.15, 9.7, 6.2 and 5.3. Kinetics of the parallel isomerization and dissociation of a-[Ni(dimH2)]4+ in HCl/NaCl solutions were monitored spectrophotometrically at 50 degrees C. The rate of reaction in acidic solutions showed a non-linear dependency on acid concentration. The observed first order rate constant (kobs) for disappearance of a-[Ni(diamH2)]4+ (by isomerization and dissociation) in 2.0 M HCl, 0.1 M NaOH and 2.0 M NaCl were 3.05 x 10-4, 2.0(3) x 10-2 and 5.0 x 10-5 s-1 respectively. The rate of the dissociation component of the reaction of a-[Ni(diamH2)]4+ in 2.0 M HCl at 50 degrees C was 1.82 x 10-7 s-1. Acid bydrolysis kinetics of (Cu[diamH2])(ClO4)4 in hydrochloric acid and perchloric acid at 50 and 70 degrees C were studied spectrophotometrically. The reactions were slow and the observed first order rate constants were to a first approximation independent of the particular acid or its concentration. The observed first order rate constants were 1 x 10-9 and 8 x 10-9 s-1 at 50 and 70 degrees C respectively. Questions about the nature of the reaction being followed have been raised.</p>


1971 ◽  
Vol 26 (10) ◽  
pp. 1010-1016 ◽  
Author(s):  
Renate Voigt ◽  
Helmut Wenck ◽  
Friedhelm Schneider

First order rate constants of the reaction of a series of SH-, imidazole- and imidazole/SH-compounds with FDNB as well as their pH- and temperature dependence were determined. Some of the tested imidazole/SH-compounds exhibit a higher nucleophilic reactivity as is expected on the basis of their pKSH-values. This enhanced reactivity is caused by an activation of the SH-groups by a neighbouring imidazole residue. The pH-independent rate constants were calculated using the Lindley equation.The kinetics of DNP-transfer from DNP-imidazole to SH-compounds were investigated. The pH-dependence of the reaction displays a maximum curve. Donor in this reaction is the DNP-imidazolecation and acceptor the thiolate anion.The reaction rate of FDNB with imidazole derivatives is two to three orders of magnitude slower than with SH-compounds.No inter- or intra-molecular transfer of the DNP-residue from sulfure to imidazole takes place.


1977 ◽  
Vol 55 (17) ◽  
pp. 3166-3171 ◽  
Author(s):  
Thomas Wilson Swaddle

For the aquation of (CH3NH2)5RhCl2+, the first order rate coefficients are represented by ΔHaq* = 101.9 kJ mol−1 and ΔSaq* = −50.2 JK−1 mol−1 in 0.1 M HClO4, while for base hydrolysis the rate is first order in [(CH3NH2)5RhCl2+] and [OH−] at ionic strength 0.10 M and the rate coefficients (in M−1 s−1) are represented by ΔHOH*> = 108.6 kJ mol−1 and ΔSOH* = 74.1 J K−1 mol−1. Acid dissociation constants are reported for (RNH2)5MOH23+ (R = H or CH3; M = Rh or Co), and these, combined with spectral data, show CH3NH2 to be a poorer electron donor than NH3 in complexes of this type, contrary to expectations. The comparative kinetics of reactions of (RNH2)5MCl2+ support the assignment of an Ia mechanism to aquation when M = Rh or Cr, Id to aquation when M = Co, and Dcb for base hydrolysis in all these cases.


Sign in / Sign up

Export Citation Format

Share Document