scholarly journals OP0332 The genomic architecture of systemic lupus erythematosus (SLE) by RNA-SEQ: distinct disease susceptibility, activity and severity signatures and extensive genetic effects on whole blood gene expression

Author(s):  
G Bertsias ◽  
N Panousis ◽  
I Gergianaki ◽  
M Tektonidou ◽  
M Trachana ◽  
...  
2019 ◽  
Author(s):  
William A Figgett ◽  
Katherine Monaghan ◽  
Milica Ng ◽  
Monther Alhamdoosh ◽  
Eugene Maraskovsky ◽  
...  

ABSTRACTObjectiveSystemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that is difficult to treat. There is currently no optimal stratification of patients with SLE, and thus responses to available treatments are unpredictable. Here, we developed a new stratification scheme for patients with SLE, based on the whole-blood transcriptomes of patients with SLE.MethodsWe applied machine learning approaches to RNA-sequencing (RNA-seq) datasets to stratify patients with SLE into four distinct clusters based on their gene expression profiles. A meta-analysis on two recently published whole-blood RNA-seq datasets was carried out and an additional similar dataset of 30 patients with SLE and 29 healthy donors was contributed in this research; 141 patients with SLE and 51 healthy donors were analysed in total.ResultsExamination of SLE clusters, as opposed to unstratified SLE patients, revealed underappreciated differences in the pattern of expression of disease-related genes relative to clinical presentation. Moreover, gene signatures correlated to flare activity were successfully identified.ConclusionGiven that disease heterogeneity has confounded research studies and clinical trials, our approach addresses current unmet medical needs and provides a greater understanding of SLE heterogeneity in humans. Stratification of patients based on gene expression signatures may be a valuable strategy to harness disease heterogeneity and identify patient populations that may be at an increased risk of disease symptoms. Further, this approach can be used to understand the variability in responsiveness to therapeutics, thereby improving the design of clinical trials and advancing personalised therapy.


2018 ◽  
Author(s):  
Nikolaos I. Panousis ◽  
George Bertsias ◽  
Halit Ongen ◽  
Irini Gergianaki ◽  
Maria Tektonidou ◽  
...  

AbstractRecent genetic and genomics approaches have yielded novel insights in the pathogenesis of Systemic Lupus Erythematosus (SLE) but the diagnosis, monitoring and treatment still remain largely empirical1,2. We reasoned that molecular characterization of SLE by whole blood transcriptomics may facilitate early diagnosis and personalized therapy. To this end, we analyzed genotypes and RNA-seq in 142 patients and 58 matched healthy individuals to define the global transcriptional signature of SLE. By controlling for the estimated proportions of circulating immune cell types, we show that the Interferon (IFN) and p53 pathways are robustly expressed. We also report cell-specific, disease-dependent regulation of gene expression and define a core/susceptibility and a flare/activity disease expression signature, with oxidative phosphorylation, ribosome regulation and cell cycle pathways being enriched in lupus flares. Using these data, we define a novel index of disease activity/severity by combining the validated Systemic Lupus Erythematosus Disease Activity Index (SLEDAI)1 with a new variable derived from principal component analysis (PCA) of RNA-seq data. We also delineate unique signatures across disease endo-phenotypes whereby active nephritis exhibits the most extensive changes in transcriptome, including prominent drugable signatures such as granulocyte and plasmablast/plasma cell activation. The substantial differences in gene expression between SLE and healthy individuals enables the classification of disease versus healthy status with median sensitivity and specificity of 83% and 100%, respectively. We explored the genetic regulation of blood transcriptome in SLE and found 3142 cis-expression quantitative trait loci (eQTLs). By integration of SLE genome-wide association study (GWAS) signals and eQTLs from 44 tissues from the Genotype-Tissue Expression (GTEx) consortium, we demonstrate that the genetic causality of SLE arises from multiple tissues with the top causal tissue being the liver, followed by brain basal ganglia, adrenal gland and whole blood. Collectively, our study defines distinct susceptibility and activity/severity signatures in SLE that may facilitate diagnosis, monitoring, and personalized therapy.


2021 ◽  
pp. annrheumdis-2021-220066
Author(s):  
Yukai Wang ◽  
Xuezhen Xie ◽  
Chengpeng Zhang ◽  
Miaotong Su ◽  
Sini Gao ◽  
...  

ObjectivesRheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and primary Sjögren’s syndrome (pSS) share many clinical manifestations and serological features. The aim of this study was to identify the common transcriptional profiling and composition of immune cells in peripheral blood in these autoimmune diseases (ADs).MethodsWe analysed bulk RNA-seq data for enrichment of biological processes, transcription factors (TFs) and deconvolution-based immune cell types from peripheral blood mononuclear cells (PBMCs) in 119 treatment-naive patients (41 RA, 38 pSS, 28 SLE and 12 polyautoimmunity) and 20 healthy controls. The single-cell RNA-seq (scRNA-seq) and flow cytometry had been performed to further define the immune cell subsets on PBMCs.ResultsSimilar transcriptional profiles and common gene expression signatures associated with nucleosome assembly and haemostasis were identified across RA, SLE, pSS and polyautoimmunity. Distinct TF ensembles and gene regulatory network were mainly enriched in haematopoiesis. The upregulated cell-lineage-specific TFs PBX1, GATA1, TAL1 and GFI1B demonstrated a strong gene expression signature of megakaryocyte (MK) expansion. Gene expression-based cell type enrichment revealed elevated MK composition, specifically, CD41b+CD42b+ and CD41b+CD61+ MKs were expanded, further confirmed by flow cytometry in these ADs. In scRNA-seq data, MKs were defined by TFs PBX1/GATA1/TAL1 and pre-T-cell antigen receptor gene, PTCRA. Cellular heterogeneity and a distinct immune subpopulation with functional enrichment of antigen presentation were observed in MKs.ConclusionsThe identification of MK expansion provided new insights into the peripheral immune cell atlas across RA, SLE, pSS and polyautoimmunity. Aberrant regulation of the MK expansion might contribute to the pathogenesis of these ADs.


Rheumatology ◽  
2009 ◽  
Vol 48 (12) ◽  
pp. 1491-1497 ◽  
Author(s):  
B. C.-H. Kwan ◽  
L.-S. Tam ◽  
K.-B. Lai ◽  
F. M.-M. Lai ◽  
E. K.-M. Li ◽  
...  

2021 ◽  
Author(s):  
Victoria Oberreiter ◽  
Tobias Goellner ◽  
David L. Morris ◽  
Helmut Schaschl

Abstract Background: Systemic lupus erythematosus (SLE) shows marked population-specific disparities in disease prevalence, including substantial variation in manifestations and complications according to genetic ancestry. Several recent studies suggest that a substantial proportion of variation of gene expression shows genetic ancestry-associated differences in gene regulation on immune responses. Positive selection may act in a population-specific manner on expression quantitative trait loci (eQTLs) and thereby contributes to the difference in the differences of SLE prevalence and manifestation in human populations. We tested the hypothesises that some of the identified SLE risk polymorphisms display pleiotropic effects or polygenicity driven by positive selection. We performed a genome-wide scan for recent positive selection by using integrated Haplotype Score (iHS) statistics in different human populations. In addition, we estimated the timing of beneficial mutations to understand what possible selective pressures drive positive selection at SLE-associated loci. Results: We identified several SLE risk loci that are population-specifically under positive selection. Almost all SNPs that are under positive selection function as cis-eQTLs in different tissue types. We determined that adaptive eQTLs affect the expression of fewer genes than non-adaptive eQTLs, suggesting a limited range of effect of an eQTL at SLE risk sites that show signatures of positive selection. Furthermore, some positively selected SNPs are located in transcription factor binding sequences. The timing of positive selection for the studied loci suggests that both environmental and recent lifestyle changes during as well as after the Neolithic Transition may have become selectively effective. We propose a novel link between positively selected eQTLs at a certain SLE risk locus in Europeans and a physiological pathway not previously considered in SLE.Conclusions: We conclude that population-specific adaptive eQTLs contribute to the observed variation in specific manifestations and complications of SLE in different ethnicities. Our results suggest also that human populations adapt more rapidly to environmental and lifestyle stimuli via modification of gene expression without having to alter the genetic code.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Elizabeth E. Cooper ◽  
Catherine E. Pisano ◽  
Samantha C. Shapiro

Lupus, Latin for “wolf,” is a term used to describe many dermatologic conditions, some of which are related to underlying systemic lupus erythematosus, while others are distinct disease processes. Cutaneous lupus erythematosus includes a wide array of visible skin manifestations and can progress to systemic lupus erythematosus in some cases. Cutaneous lupus can be subdivided into three main categories: acute cutaneous lupus erythematosus, subacute cutaneous lupus erythematosus, and chronic cutaneous lupus erythematosus. Physical exam, laboratory studies, and histopathology enable differentiation of cutaneous lupus subtypes. This differentiation is paramount as the subtype of cutaneous lupus informs upon treatment, disease monitoring, and prognostication. This review outlines the different cutaneous manifestations of lupus erythematosus and provides an update on both topical and systemic treatment options for these patients. Other conditions that utilize the term “lupus” but are not cutaneous lupus erythematosus are also discussed.


2021 ◽  
Author(s):  
Hui Ma ◽  
Lin Wang ◽  
Zilu Wen ◽  
Xinchun Chen ◽  
Haiying Liu ◽  
...  

ABSTRACTMetabolic activity in pulmonary lesion is associated with disease severity and relapse risk in tuberculosis. However, the nature of the metabolic activity associated with tuberculosis in humans remains unclear. Previous works indicate that tuberculosis bears resemblance transcriptionally with systemic lupus erythematosus in peripheral blood, except that the plasma cell component was absent in tuberculosis. Here we reported that the missing transcriptional component was present within the metabolic active tissues in the lung of patients with sputum culture-negative tuberculosis, within which increased levels of circulating immune complexes and anti-dsDNA antibodies were found relative to nearby non-metabolic active tissues. Histological examination revealed specific vascular deposition of immune complexes, neutrophil extracellular traps, and vascular necrosis in the metabolic-active tissue. Thus, tuberculosis-initiated metabolic activity was associated with hyperactive antibody responses and vascular pathology, and shared features with systemic lupus erythematosus and other autoimmune diseases. We discussed these observations in the context of earlier literatures demonstrating that similar effects could be induced in humans and animal models by complete freund’s adjuvant, the most potent antibody response inducer ever reported. Our small case series, if verified in a larger size study, might help inform host-directed therapies to alleviate disease progression and augment treatment efficacy.IMPORTANCEIn patients with pulmonary tuberculosis, lung tissues were destroyed by a hyperactive inflammatory response towards M. tuberculosis. The mechanisms underlying the inflammatory response are still poorly understood. Using 18F-FDG avidity as a surrogate marker of inflammation, we have identified that hyper-inflamed tissues possessed features associated with systemic lupus erythematosus: gene expression signatures of plasma cell and immunoglobulins and increased levels of anti-dsDNA antibodies, immune deposits, and vasculopathy. This observation might suggest an explanation to why patients with tuberculosis share more gene expression signatures with autoimmune diseases than infectious diseases and why they are more likely to develop autoimmune diseases. Defining the inflammatory responses at the lesion could help inform host-directed therapies to intervene disease progression or even accelerate cure.


Sign in / Sign up

Export Citation Format

Share Document