scholarly journals Contrasting contributions of TNF from distinct cellular sources in arthritis

2020 ◽  
Vol 79 (11) ◽  
pp. 1453-1459 ◽  
Author(s):  
Andrey Kruglov ◽  
Marina Drutskaya ◽  
Dirk Schlienz ◽  
Ekaterina Gorshkova ◽  
Katharina Kurz ◽  
...  

ObjectivesNeutralisation of tumour necrosis factor (TNF) is widely used as a therapy for rheumatoid arthritis (RA). However, this therapy is only effective in less than a half of patients and is associated with several side effects. We hypothesised that TNF may possess non-redundant protective and immunomodulatory functions in vivo that cannot be blocked without a cost. The present work aimed to identify cellular sources of protective and pathogenic TNF, and its molecular forms during autoimmune arthritis.MethodsMice lacking TNF expression by distinct cell types, such as myeloid cells and T or B lymphocytes, were subjected to collagen-induced arthritis (CIA) and collagen antibody-induced arthritis. Mice lacking soluble TNF production were also employed. The severity and incidence of the disease, as well as humoral and cellular responses were assessed.ResultsMyeloid cell-derived TNF contributes to both induction and pathogenesis of autoimmune arthritis. Conversely, T cell-derived TNF is protective during the induction phase of arthritis via limiting of interleukin-12 production by dendritic cells and by subsequent control of autoreactive memory T cell development, but is dispensable during the effector phase of arthritis. B cell-derived TNF mediates severity of CIA via control of pathogenic autoantibody production.ConclusionsDistinct TNF-producing cell types may modulate disease development through different mechanisms, suggesting that in arthritis TNF ablation from restricted cellular sources, such as myeloid cells, while preserving protective TNF functions from other cell types may be superior to pan-anti-TNF therapy.

2019 ◽  
Vol 93 (24) ◽  
Author(s):  
Nishank Bhalla ◽  
Christina L. Gardner ◽  
Sierra N. Downs ◽  
Matthew Dunn ◽  
Chengqun Sun ◽  
...  

ABSTRACT Alphavirus infection of fibroblastic cell types in vitro inhibits host cell translation and transcription, leading to suppression of interferon alpha/beta (IFN-α/β) production. However, the effect of infection upon myeloid cells, which are often the first cells encountered by alphaviruses in vivo, is unclear. Previous studies demonstrated an association of systemic IFN-α/β production with myeloid cell infection efficiency. Murine infection with wild-type Venezuelan equine encephalitis virus (VEEV), a highly myeloid-cell-tropic alphavirus, results in secretion of very high systemic levels of IFN-α/β, suggesting that stress responses in responding cells are active. Here, we infected myeloid cell cultures with VEEV to identify the cellular source of IFN-α/β, the timing and extent of translation and/or transcription inhibition in infected cells, and the transcription factors responsible for IFN-α/β induction. In contrast to fibroblast infection, myeloid cell cultures infected with VEEV secreted IFN-α/β that increased until cell death was observed. VEEV inhibited translation in most cells early after infection (<6 h postinfection [p.i.]), while transcription inhibition occurred later (>6 h p.i.). Furthermore, the interferon regulatory factor 7 (IRF7), but not IRF3, transcription factor was critical for IFN-α/β induction in vitro and in sera of mice. We identified a subset of infected Raw 264.7 myeloid cells that resisted VEEV-induced translation inhibition and secreted IFN-α/β despite virus infection. However, in the absence of IFN receptor signaling, the size of this cell population was diminished. These results indicate that IFN-α/β induction in vivo is IRF7 dependent and arises in part from a subset of myeloid cells that are resistant, in an IFN-α/β-dependent manner, to VEEV-induced macromolecular synthesis inhibition. IMPORTANCE Most previous research exploring the interaction of alphaviruses with host cell antiviral responses has been conducted using fibroblast lineage cell lines. Previous studies have led to the discovery of virus-mediated activities that antagonize host cell antiviral defense pathways, such as host cell translation and transcription inhibition and suppression of STAT1 signaling. However, their relevance and impact upon myeloid lineage cell types, which are key responders during the initial stages of alphavirus infection in vivo, have not been well studied. Here, we demonstrate the different abilities of myeloid cells to resist VEEV infection compared to nonmyeloid cell types and begin to elucidate the mechanisms by which host antiviral responses are upregulated in myeloid cells despite the actions of virus-encoded antagonists.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3226-3239 ◽  
Author(s):  
Ping Zhou ◽  
Liping Qian ◽  
Christine K. Bieszczad ◽  
Randolph Noelle ◽  
Michael Binder ◽  
...  

Abstract Mcl-1 is a member of the Bcl-2 family that is expressed in early monocyte differentiation and that can promote viability on transfection into immature myeloid cells. However, the effects of Mcl-1 are generally short lived compared with those of Bcl-2 and are not obvious in some transfectants. To further explore the effects of this gene, mice were produced that expressed Mcl-1 as a transgene in hematolymphoid tissues. The Mcl-1 transgene was found to cause moderate viability enhancement in a wide range of hematopoietic cell types, including lymphoid (B and T) as well as myeloid cells at both immature and mature stages of differentiation. However, enhanced hematopoietic capacity in transgenic bone marrow and spleen was not reflected in any change in pool sizes in the peripheral blood. In addition, among transgenic cells, mature T cells remained long lived compared with B cells and macrophages could live longer than either of these. Interestingly, when hematopoietic cells were maintained in tissue culture in the presence of interleukin-3, Mcl-1 enhanced the probability of outgrowth of continuously proliferating myeloid cell lines. Thus, Mcl-1 transgenic cells remained subject to normal in vivo homeostatic mechanisms controlling viable cell number, but these constraints could be overridden under specific conditions in vitro. Within the organism, Bcl-2 family members may act at “viability gates” along the differentiation continuum, functioning as part of a system for controlled hematopoietic cell amplification. Enforced expression of even a moderate viability-promoting member of this family such as Mcl-1, within a conducive intra- and extracellular environment in isolation from normal homeostatic constraints, can substantially increase the probability of cell immortalization. © 1998 by The American Society of Hematology.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 374-374 ◽  
Author(s):  
Zhong-fa Yang ◽  
Karen Drumea ◽  
Alan G. Rosmarin

Abstract GABP is an ets transcription factor that regulates genes that are required for innate immunity, including CD18 (β2 leukocyte integrin), lysozyme, and neutrophil elastase. GABP consists of two distinct and unrelated proteins. GABPα binds to DNA through its ets domain and recruits GABPβ, which contains the transactivation domain; together, they form a functional tetrameric transcription factor complex. We recently showed that GABP is required for entry into S phase of the cell cycle through its regulation of genes that are required for DNA synthesis and cyclin dependent kinase inhibitors (Yang, et al. Nature Cell Biol9:339, 2007). Furthermore, GABP is an essential component of a retinoic acid responsive myeloid enhanceosome (Resendes and Rosmarin Mol Cell Biol26:3060, 2006). We cloned Gabpa (the gene that encodes mouse Gabpα) from a mouse genomic BAC library and prepared a targeting vector in which the ets domain is flanked by loxP recombination sites (floxed allele). Deletion of both floxed Gabpa alleles causes an early embryonic lethal defect. In order to define the role of Gabpα in myelopoiesis, we bred floxed Gabpa mice to mice that bear the Mx1-Cre transgene, which drives expression of Cre recombinase in response to injection of the synthetic polynucleotide, poly I-C. Deletion of Gabpa dramatically reduced granulocytes and monocytes in the peripheral blood, spleen, and bone marrow, but myeloid cells recovered within weeks. In vitro colony forming assays indicated that myeloid cells in these mice were derived only from Gabpa replete myeloid precursors (that failed to delete both Gabpa alleles), suggesting strong pressure to retain Gabpα in vivo. We used a novel competitive bone marrow transplantation approach to determine if Gabp is required for myeloid cell development in vivo. Sub-lethally irradiated wild-type recipient mice bearing leukocyte marker CD45.1 received equal proportions of bone marrow from wild type CD45.1 donor mice and floxed-Mx1-Cre donor mice that bear CD45.2. Both the CD45.2 (floxed-Mx1-Cre) and CD45.1 (wild type) bone marrow engrafted well. Mice were then injected with pI-pC to induce Cre-mediated deletion of floxed Gabpa. The mature myeloid and T cell compartments were derived almost entirely from wild type CD45.1 cells. This indicates that the proliferation and/or differentiation of myeloid and T cell lineages requires Gabp. In contrast, B cell development was not impaired. We conclude that Gabpa disruption causes a striking loss of myeloid cells in vivo and corroborates prior in vitro data that GABP plays a crucial role in proliferation of myeloid progenitor cells.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3226-3239 ◽  
Author(s):  
Ping Zhou ◽  
Liping Qian ◽  
Christine K. Bieszczad ◽  
Randolph Noelle ◽  
Michael Binder ◽  
...  

Mcl-1 is a member of the Bcl-2 family that is expressed in early monocyte differentiation and that can promote viability on transfection into immature myeloid cells. However, the effects of Mcl-1 are generally short lived compared with those of Bcl-2 and are not obvious in some transfectants. To further explore the effects of this gene, mice were produced that expressed Mcl-1 as a transgene in hematolymphoid tissues. The Mcl-1 transgene was found to cause moderate viability enhancement in a wide range of hematopoietic cell types, including lymphoid (B and T) as well as myeloid cells at both immature and mature stages of differentiation. However, enhanced hematopoietic capacity in transgenic bone marrow and spleen was not reflected in any change in pool sizes in the peripheral blood. In addition, among transgenic cells, mature T cells remained long lived compared with B cells and macrophages could live longer than either of these. Interestingly, when hematopoietic cells were maintained in tissue culture in the presence of interleukin-3, Mcl-1 enhanced the probability of outgrowth of continuously proliferating myeloid cell lines. Thus, Mcl-1 transgenic cells remained subject to normal in vivo homeostatic mechanisms controlling viable cell number, but these constraints could be overridden under specific conditions in vitro. Within the organism, Bcl-2 family members may act at “viability gates” along the differentiation continuum, functioning as part of a system for controlled hematopoietic cell amplification. Enforced expression of even a moderate viability-promoting member of this family such as Mcl-1, within a conducive intra- and extracellular environment in isolation from normal homeostatic constraints, can substantially increase the probability of cell immortalization. © 1998 by The American Society of Hematology.


Author(s):  
Abraham J.P. Teunissen ◽  
Mandy M.T. van Leent ◽  
Geoffrey Prevot ◽  
Eliane E.S. Brechbuhl ◽  
Carlos Pérez-Medina ◽  
...  

The innate immune system plays a key role in atherosclerosis progression and the pathogenesis of cardiovascular disease. Trained immunity, an epigenetically regulated hyperresponsive state of myeloid cells, is a driving force underlying chronic inflammation in atherosclerosis. Therapeutically targeting innate trained immunity therefore may mature into a compelling new paradigm for the effective treatment of cardiovascular patients, which would require effective engagement of myeloid cells. For over a decade, we have worked on apolipoprotein A1-based nanomaterials, referred to as nanobiologics, which we have utilized for myeloid cell-directed immunotherapy. Here, we review the application of our nanobiologic immunotherapies in treating vascular disease. The design of nanobiologic therapeutics, as well as their use in targeting myeloid cells and cellular pathways related to trained immunity, is discussed. Furthermore, we show that nanobiologic biocompatibility and in vivo behavior are conserved across species, from mice to larger animals, including rabbits, pigs, and nonhuman primates. Last, we deliberate on the hurdles that currently prevent widespread translation of trained immunity targeting cardiovascular nanotherapies.


2020 ◽  
Vol 5 (43) ◽  
pp. eaay1863 ◽  
Author(s):  
Laura Strauss ◽  
Mohamed A. A. Mahmoud ◽  
Jessica D. Weaver ◽  
Natalia M. Tijaro-Ovalle ◽  
Anthos Christofides ◽  
...  

PD-1, a T cell checkpoint receptor and target of cancer immunotherapy, is also expressed on myeloid cells. The role of myeloid-specific versus T cell–specific PD-1 ablation on antitumor immunity has remained unclear because most studies have used either PD-1–blocking antibodies or complete PD-1 KO mice. We generated a conditional allele, which allowed myeloid-specific (PD-1f/fLysMcre) or T cell–specific (PD-1f/fCD4cre) targeting of Pdcd1 gene. Compared with T cell–specific PD-1 ablation, myeloid cell–specific PD-1 ablation more effectively decreased tumor growth. We found that granulocyte/macrophage progenitors (GMPs), which accumulate during cancer-driven emergency myelopoiesis and give rise to myeloid-derived suppressor cells (MDSCs), express PD-1. In tumor-bearing PD-1f/fLysMcre but not PD-1f/fCD4cre mice, accumulation of GMP and MDSC was prevented, whereas systemic output of effector myeloid cells was increased. Myeloid cell–specific PD-1 ablation induced an increase of T effector memory cells with improved functionality and mediated antitumor protection despite preserved PD-1 expression in T cells. In PD-1–deficient myeloid progenitors, growth factors driving emergency myelopoiesis induced increased metabolic intermediates of glycolysis, pentose phosphate pathway, and TCA cycle but, most prominently, elevated cholesterol. Because cholesterol is required for differentiation of inflammatory macrophages and DC and promotes antigen-presenting function, our findings indicate that metabolic reprogramming of emergency myelopoiesis and differentiation of effector myeloid cells might be a key mechanism of antitumor immunity mediated by PD-1 blockade.


Retrovirology ◽  
2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Brenda Rocamonde ◽  
Auriane Carcone ◽  
Renaud Mahieux ◽  
Hélène Dutartre

AbstractHuman T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T-cell leukemia/lymphoma (ATLL) and the demyelinating neuroinflammatory disease known as HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), was the first human retrovirus to be discovered. T-cells, which represent the main reservoir for HTLV-1, have been the main focus of studies aimed at understanding viral transmission and disease progression. However, other cell types such as myeloid cells are also target of HTLV-1 infection and display functional alterations as a consequence. In this work, we review the current investigations that shed light on infection, transmission and functional alterations subsequent to HTLV-1 infection of the different myeloid cells types, and we highlight the lack of knowledge in this regard.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A59.2-A60
Author(s):  
A Osipov ◽  
L Zheng

BackgroundPancreatic ductal adenocarcinoma (PDAC) is resistant to immune checkpoint inhibition. One of the major resistance mechanisms is attributed to myeloid cells as an immunosuppressive element within the stroma of PDAC. It has been reported that focal adhesion kinase inhibitor (FAKi) can suppress immunosuppressive myeloid cells such as tumor associated macrophages (TAMs) and myeloid derived suppressor cells (MDSC), consequently sensitizing tumor to anti-PD1 antibody in mouse models of PDAC. Our group has previously shown in a murine model that targeting the stroma via PEGylated recombinant human hyaluronidase (PEGPH20) enhanced the anti-tumor activity of the whole cell vaccine (GVAX) by targeting CXCR4-expressing myeloid cells and led to an increase in infiltration of CCR7- effector memory T cell subsets. Here, we evaluate the hypothesis that FAK expressing myeloid cell subsets modulate T cell infiltration in human PDAC and FAKi can synergize with PEGPH20 by targeting myeloid cells in PDAC.Material and MethodsResected human PDAC tissue specimens treated with GVAX and anti-PD1 therapy was used to assess FAK expression in myeloid cell subsets and its impact on T cell infiltration. A sequential staining and stripping multiplex IHC technique that incorporates 28 myeloid and lymphoid biomarkers, as well as phosphorylated FAK (pFAK) combined with computational image processing was used to assess myeloid cell populations, T cell infiltration and FAK expression.An established murine model of metastatic PDAC treated with and without anti-PD1 therapy was used to assess the synergy and immune-modulating effect of FAKi and stromal degradation of hyaluronan via PEGPH20.ResultsIn human PDAC, FAK is widely expressed in TAMs and neutrophils. Increased FAK expression is associated with increased CXCR4 expression. Lower pFAK density in neutrophils and M2 TAMs, but not lower pFAK density in M1 TAMs, is associated with higher CD8+ T cell infiltration.FAKi and combination of FAKi with anti-PD1 extends survival in the mouse metastasis model of PDAC. Adding PEGPH20 to FAKi and anti-PD1 antibody significantly prolonged survival in this model. Comparing to the combination of FAKi and anti-PD1 antibody, adding PEGPH20 significantly decreased the number of CXCR4-expressing myeloid cells in the tumor microenvironment (TME) of PDAC and consequently led to an increase in the amount of CCR7+ central memory T cells. Additionally, the amount of G-MDSCs, inflammatory resident monocytes and PDL1 expressing myeloid cells in the TME of PDAC, was also decreased in PDAC treated with the triple combination of PEGPH20, FAKi and anti-PD1 antibody compared to FAKi and anti-PD1 antibody.ConclusionFAK is widely expressed in myeloid cell populations, directly correlated with CXCR4 expression and decreased FAK expression in a myeloid (M2 TAMs, neutrophil) inflamed stroma is associated with infiltration of effector CD8 T cells in human PDAC. Stromal degradation of hyaluronan via PEGPH20 combined with FAKi and anti-PD1 antibody further depletes immunosuppressive cells in the TME including G-MDSCs, inflammatory resident monocytes and PDL1 expressing myeloid cells and appears to target the CXCR4 pathway through PEGPH20. These findings support testing the combination of FAKi and anti-PD1 antibody with agents targeting CXCR4 directly or indirectly by PEGPH20 in human PDAC.Disclosure InformationA. Osipov: None. L. Zheng: None.


1987 ◽  
Vol 105 (1) ◽  
pp. 553-559 ◽  
Author(s):  
E Roos ◽  
F F Roossien

We studied the interaction of MB6A lymphoma and TAM2D2 T cell hybridoma cells with hepatocyte cultures as an in vitro model for in vivo liver invasion by these tumor cells. A monoclonal antibody against leukocyte function-associated antigen-1 (LFA-1) inhibited adhesion of the tumor cells to the surface of hepatocytes and consequently strongly reduced invasion. This effect was specific since control antibodies, directed against Thy.1 and against T200, of the same isotype, similar affinity, and comparable binding to these cells, did not inhibit adhesion. This suggests that LFA-1 is involved in the formation of liver metastases by lymphoma cells. TAM2D2 T cell hybridoma cells were agglutinated by anti-LFA-1, but not by control antibodies. Reduction of adhesion was not due to this agglutination since monovalent Fab fragments inhibited adhesion as well, inhibition was also seen under conditions where agglutination was minimal, and anti-LFA-1 similarly affected adhesion of MB6A lymphoma cells that were not agglutinated. The two cell types differed in LFA-1 surface density. TAM2D2 cells exhibited 400,000 surface LFA-1 molecules, 10 times more than MB6A cells. Nevertheless, the level of adhesion and the extent of inhibition by the anti-LFA-1 antibody were only slightly larger for the TAM2D2 cells.


2018 ◽  
Vol 215 (4) ◽  
pp. 1101-1113 ◽  
Author(s):  
Marc-Werner Dobenecker ◽  
Joon Seok Park ◽  
Jonas Marcello ◽  
Michael T. McCabe ◽  
Richard Gregory ◽  
...  

Differentiation and activation of T cells require the activity of numerous histone lysine methyltransferases (HMT) that control the transcriptional T cell output. One of the most potent regulators of T cell differentiation is the HMT Ezh2. Ezh2 is a key enzymatic component of polycomb repressive complex 2 (PRC2), which silences gene expression by histone H3 di/tri-methylation at lysine 27. Surprisingly, in many cell types, including T cells, Ezh2 is localized in both the nucleus and the cytosol. Here we show the presence of a nuclear-like PRC2 complex in T cell cytosol and demonstrate a role of cytosolic PRC2 in T cell antigen receptor (TCR)–mediated signaling. We show that short-term suppression of PRC2 precludes TCR-driven T cell activation in vitro. We also demonstrate that pharmacological inhibition of PRC2 in vivo greatly attenuates the severe T cell–driven autoimmunity caused by regulatory T cell depletion. Our data reveal cytoplasmic PRC2 is one of the most potent regulators of T cell activation and point toward the therapeutic potential of PRC2 inhibitors for the treatment of T cell–driven autoimmune diseases.


Sign in / Sign up

Export Citation Format

Share Document