scholarly journals Tenascin-C-mediated suppression of extracellular matrix adhesion force promotes entheseal new bone formation through activation of Hippo signalling in ankylosing spondylitis

2021 ◽  
pp. annrheumdis-2021-220002
Author(s):  
Zihao Li ◽  
Siwen Chen ◽  
Haowen Cui ◽  
Xiang Li ◽  
Dongying Chen ◽  
...  

ObjectivesThe aim of this study was to identify the role of tenascin-C (TNC) in entheseal new bone formation and to explore the underlying molecular mechanism.MethodsLigament tissue samples were obtained from patients with ankylosing spondylitis (AS) during surgery. Collagen antibody-induced arthritis and DBA/1 models were established to observe entheseal new bone formation. TNC expression was determined by immunohistochemistry staining. Systemic inhibition or genetic ablation of TNC was performed in animal models. Mechanical properties of extracellular matrix (ECM) were measured by atomic force microscopy. Downstream pathway of TNC was analysed by RNA sequencing and confirmed with pharmacological modulation both in vitro and in vivo. Cellular source of TNC was analysed by single-cell RNA sequencing (scRNA-seq) and confirmed by immunofluorescence staining.ResultsTNC was aberrantly upregulated in ligament and entheseal tissues from patients with AS and animal models. TNC inhibition significantly suppressed entheseal new bone formation. Functional assays revealed that TNC promoted new bone formation by enhancing chondrogenic differentiation during endochondral ossification. Mechanistically, TNC suppressed the adhesion force of ECM, resulting in the activation of downstream Hippo/yes-associated protein signalling, which in turn increased the expression of chondrogenic genes. scRNA-seq and immunofluorescence staining further revealed that TNC was majorly secreted by fibroblast-specific protein-1 (FSP1)+fibroblasts in the entheseal inflammatory microenvironment.ConclusionInflammation-induced aberrant expression of TNC by FSP1+fibroblasts promotes entheseal new bone formation by suppressing ECM adhesion forces and activating Hippo signalling.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1832.2-1833
Author(s):  
J. De Jongh ◽  
R. Hemke ◽  
G. C. J. Zwezerijnen ◽  
M. Yaqub ◽  
I. Van der Horst-Bruinsma ◽  
...  

Background:Bone formation in spondyloarthritis (SpA) is presumably related to local enthesitis/peri-articular inflammation and ultimately may lead to functional limitation (1,2). X-rays only allow long-term monitoring of bone formation (≥2 years) (3). Imaging techniques that can visualize bone formation at an early stage would therefore be valuable. Positron Emission Tomography (PET) using [18F]Fluoride can visualize and quantify (early changes in) bone formation at molecular level (4).Objectives:To investigate the feasibility of [18F]Fluoride to assess new bone formation at axial and peripheral enthesial sites in SpA patients.Methods:Thus far, 5 of the total of 15 patients with clinically active ankylosing spondylitis (AS) (according to modified New York criteria and BASDAI ≥4) and 8 of the 25 patients with active psoriatic arthritis (PsA) (according to CASPAR criteria and ≥1 clinically active enthesitis) were included. Of each patient, a whole body [18F]Fluoride PET-CT scan was performed. All scans were visually judged and scored dichotomously by one reader (blinded for clinical data) for PET-positive lesions in the spine, peripheral enthesis sites and joints. Low dose CT was used for anatomical reference.Results:The study is ongoing, with whole body [18F]Fluoride PET-CT scans available in five AS patients and eight PsA patients. In 4/5 AS scans, at least (≥1) PET positive lesions were found in the cervical, thoracic and/or lumbar vertebrae. These were mainly found in anterior corners of vertebrae and bridging syndesmophytes (Fig. 1A). In all eight PsA patients, at least 1 PET positive lesion was visualized, projected either at the site of a tendon attachment (fascia plantaris, achilles- and patella tendon (Fig 1B)) or peri-articularly (in the ankle or wrist).Fig 1.[18F]Fluoride uptake in the cervical, thoracic and lumbar spine in a clinically active AS patient (A) and in the patella tendon of the right knee in a clinically active PsA patient (B)Conclusion:[18F]Fluoride PET uptake, reflecting new bone formation, can be visualized at heterogeneously distributed enthesis and (peri-)articular sites in AS- and PsA patients. The technique therefore is sensitive to visualize new bone formation and may reflect local disease activity. Additional scans will be collected and analyzed quantitatively, also after anti-TNF or Secukinumab treatment, to further investigate the applicability of [18F]Fluoride PET for monitoring of therapeutic effects on bone formation in SpA.References: :[1]Maksymowych WP, Mallon C, Morrow S, Shojania K, Olszynski WP, Wong RL, et al. Development and validation of the Spondyloarthritis Research Consortium of Canada (SPARCC) Enthesitis Index. Ann Rheum Dis. 2009;68(6):948-53.[2]Rezvani A, Bodur H, Ataman S, Kaya T, Bugdayci DS, Demir SE, et al. Correlations among enthesitis, clinical, radiographic and quality of life parameters in patients with ankylosing spondylitis. Mod Rheumatol. 2014;24(4):651-6.[3]Rudwaleit M, Khan MA, Sieper J. The challenge of diagnosis and classification in early ankylosing spondylitis: do we need new criteria? Arthritis Rheum 2005;52:1000-8..[4]Bruijnen ST, Verweij NJF, van Duivenvoorde L, Bravenboer N, Baeten D, van Denderen JC, et al. [18F]Fluoride PET-CT imaging of bone formation in ankylosing spondylitis before and after 12 weeks of anti-TNF treatment. 2017.Acknowledgments:We thank EULAR Foreum, Pfizer and Novartis for financial support of this investigator initiated study.Disclosure of Interests:Jerney de Jongh: None declared, Robert Hemke: None declared, Gerben C.J. Zwezerijnen: None declared, Maqsood Yaqub: None declared, Irene van der Horst-Bruinsma Grant/research support from: AbbVie, Novartis, Eli Lilly, Bristol-Myers Squibb, MSD, Pfizer, UCB Pharma, Consultant of: AbbVie, Novartis, Eli Lilly, Bristol-Myers Squibb, MSD, Pfizer, UCB Pharma, Marleen G.H. van de Sande Grant/research support from: Novartis, Eli lily, UCB, Jansen, Consultant of: Abbvie, Novartis, Eli lily, MSD, Arno Van Kuijk: None declared, Irene Bultink: None declared, Lot Burgemeister: None declared, Nancy M.A. van Dillen: None declared, Alexandre Voskuyl: None declared, Conny J. van der Laken: None declared


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3513
Author(s):  
Nikola Stokovic ◽  
Natalia Ivanjko ◽  
Drazen Maticic ◽  
Frank P. Luyten ◽  
Slobodan Vukicevic

Bone morphogenetic proteins (BMPs) possess a unique ability to induce new bone formation. Numerous preclinical studies have been conducted to develop novel, BMP-based osteoinductive devices for the management of segmental bone defects and posterolateral spinal fusion (PLF). In these studies, BMPs were combined with a broad range of carriers (natural and synthetic polymers, inorganic materials, and their combinations) and tested in various models in mice, rats, rabbits, dogs, sheep, and non-human primates. In this review, we summarized bone regeneration strategies and animal models used for the initial, intermediate, and advanced evaluation of promising therapeutical solutions for new bone formation and repair. Moreover, in this review, we discuss basic aspects to be considered when planning animal experiments, including anatomical characteristics of the species used, appropriate BMP dosing, duration of the observation period, and sample size.


2014 ◽  
Vol 73 (Suppl 2) ◽  
pp. 103.1-103
Author(s):  
S. Hong ◽  
E.-J. Lee ◽  
Y.J. Kim ◽  
B.S. Koo ◽  
E.-J. Chang ◽  
...  

Oncotarget ◽  
2017 ◽  
Vol 8 (57) ◽  
pp. 96993-97008 ◽  
Author(s):  
Tao He ◽  
Yan Huang ◽  
Chen Zhang ◽  
Denghui Liu ◽  
Chao Cheng ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fenli Shao ◽  
Qianqian Liu ◽  
Yuyu Zhu ◽  
Zhidan Fan ◽  
Wenjun Chen ◽  
...  

AbstractBony fusion caused by pathological new bone formation manifests the clinical feature of ankylosing spondylitis (AS). However, the underlying mechanism remains elusive. Here we discovered spontaneous kyphosis, arthritis and bony fusion in mature CD4-Cre;Ptpn11f/f mice, which present the pathophysiological features of AS. A population of CD4-Cre-expressing proliferating chondrocytes was SHP2 deficient, which could differentiate into pre-hypertrophic and hypertrophic chondrocytes. Functionally, SHP2 deficiency in chondrocytes impeded the fusion of epiphyseal plate and promoted chondrogenesis in joint cavity and enthesis. Mechanistically, aberrant chondrocytes promoted ectopic new bone formation through BMP6/pSmad1/5 signaling. It is worth emphasizing that such pathological thickness of growth plates was evident in adolescent humans with enthesitis-related arthritis, which could progress to AS in adulthood. Targeting dysfunctional chondrogenesis with Smo inhibitor sonidegib significantly alleviated the AS-like bone disease in mice. These findings suggest that blockade of chondrogenesis by sonidegib would be a drug repurposing strategy for AS treatment.


Sign in / Sign up

Export Citation Format

Share Document