scholarly journals Rapidly maturing fentanyl clearance in preterm neonates

2019 ◽  
Vol 104 (6) ◽  
pp. F598-F603 ◽  
Author(s):  
Swantje Völler ◽  
Robert B Flint ◽  
Peter Andriessen ◽  
Karel Allegaert ◽  
Luc J I Zimmermann ◽  
...  

BackgroundFentanyl is frequently used off-label in preterm newborns. Due to very limited pharmacokinetic and pharmacodynamic data, fentanyl dosing is mostly based on bodyweight. This study describes the maturation of the pharmacokinetics in preterm neonates born before 32 weeks of gestation.Methods442 plasma samples from 98 preterm neonates (median gestational age: 26.9 (range 23.9–31.9) weeks, postnatal age: 3 (range 0–68) days, bodyweight 1.00 (range 0.39–2.37) kg) were collected in an opportunistic trial and fentanyl plasma levels were determined. NONMEM V.7.3 was used to develop a population pharmacokinetic model and to perform simulations.ResultsFentanyl pharmacokinetics was best described by a two-compartment model. A pronounced non-linear influence of postnatal and gestational age on clearance was identified. Clearance (L/hour/kg) increased threefold, 1.3-fold and 1.01-fold in the first, second and third weeks of life, respectively. In addition, clearance (L/hour/kg) was 1.4-fold and 1.7-fold higher in case of a gestational age of 28 and 31 weeks, respectively, compared with 25 weeks. Volume of distribution changed linearly with bodyweight and was 8.7 L/kg. To achieve similar exposure across the entire population, a continuous infusion (µg/kg/hour) dose should be reduced by 50% and 25% in preterm neonates with a postnatal age of 0–4 days and 5–9 days in comparison to 10 days and older.ConclusionBecause of low clearance, bodyweight-based dosages may result in fentanyl accumulation in neonates with the lowest postnatal and gestational ages which may require dose reduction. Together with additional information on the pharmacodynamics, the results of this study can be used to guide dosing.

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S574-S575
Author(s):  
Jiajun Liu ◽  
Michael Neely ◽  
Jeffrey Lipman ◽  
Fekade B Sime ◽  
Jason Roberts ◽  
...  

Abstract Background Cefepime (CEF) is commonly used for adult and pediatric infections. Several studies have examined CEF’s pharmacokinetics (PK) in various populations; however, a unifying PK model for adult and pediatric subjects does not yet exist. We developed a combined population model for adult and pediatric patients and validated the model. Methods The initial model includes adult and pediatric patients with a rich cefepime sampling design. All adults received 2 g CEF while pediatric subjects received a mean of 49 (SD 5) mg/kg. One- and two-compartment models were considered as base models and were fit using a non-parametric adaptive grid algorithm within the Pmetrics package 1.5.2 (Los Angeles, CA) for R 3.5.1. Compartmental model selection was based on Akaike information criteria (AIC). Covariate relationships with PK parameters were visually inspected and mathematically assessed. Predictive performance was evaluated using bias and imprecision of the population and individual prediction models. External validation was conducted using a separate adult cohort. Results A total of 45 subjects (n = 9 adults; n = 36 pediatrics) were included in the initial PK model build and 12 subjects in the external validation cohort. Overall, the data were best described using a two-compartment model with volume of distribution (V) normalized to total body weight (TBW/70 kg) and an allometric scaled elimination rate constant (Ke) for pediatric subjects (AIC = 4,138.36). Final model observed vs. predicted plots demonstrated good fit (population R2 = 0.87, individual R2 = 0.97, Figure 1a and b). For the final model, the population median parameter values (95% credibility interval) were V0 (total volume of distribution), 11.7 L (10.2–14.6); Ke for adult, 0.66 hour−1 (0.38–0.78), Ke for pediatrics, 0.82 hour−1 (0.64–0.85), KCP (rate constant from central to peripheral compartment), 1.4 hour−1 (1.3–1.8), KPC (rate constant from peripheral to central compartment), 1.6 hour−1 (1.2–1.8). The validation cohort has 12 subjects, and the final model fit the data well (individual R2 = 0.75). Conclusion In this diverse group of adult and pediatrics, a two-compartment model described CEF PK well and was externally validated with a unique cohort. This model can serve as a population prior for real-time PK software algorithms. Disclosures All authors: No reported disclosures.


Author(s):  
Mohammad H. Alshaer ◽  
Sylvain Goutelle ◽  
Barbara Santevecchi ◽  
Bethany Shoulders ◽  
Veena Venugopalan ◽  
...  

Cefepime is the second most common cephalosporin used in U.S. hospitals. We aim to develop and validate cefepime population pharmacokinetic (PK) model and integrate into precision dosing tool for implementation. Two datasets (680 patients) were used to build cefepime PK model in Pmetrics, and three datasets (34 patients) were used for the validation. A separate application dataset (115 patients) was used for the implementation and validation of a precision dosing tool. The model support points and covariates were used to generate the optimal initial dose (OID). Cefepime PK was described by a two-compartment model including weight and creatinine clearance (CrCl) as covariates. The median rate of elimination was 0.30 hr −1 (adults) and 0.96 hr −1 (pediatrics), central volume of distribution 13.85 L, and rate of transfer from the central to the peripheral compartments 1.22 hr −1 and from the peripheral to the central compartments 1.38 hr −1 . After integration in BestDose, the observed vs. predicted cefepime concentration fit using the application dataset was excellent (R 2 >0.98) and the median difference between observed and what BestDose predicted in a second occasion was 4%. For OID, cefepime 0.5-1g 4-hour infusion q8-24hr with CrCl<70 mL/min was needed to achieve a target range of free trough:MIC 1-4 at MIC 8 mg/L, while continuous infusion was needed for higher CrCl and weight values. In conclusion, we developed and validated a cefepime model for clinical application. The model was integrated in a precision dosing tool for implementation and the median concentration prediction bias was 4%. OID algorithm was provided.


2018 ◽  
Vol 47 (04) ◽  
pp. 621-629 ◽  
Author(s):  
Lisette Schütte ◽  
Reinier van Hest ◽  
Sara Stoof ◽  
Frank Leebeek ◽  
Marjon Cnossen ◽  
...  

Background Nonsevere haemophilia A (HA) patients can be treated with desmopressin. Response of factor VIII activity (FVIII:C) differs between patients and is difficult to predict. Objectives Our aims were to describe FVIII:C response after desmopressin and its reproducibility by population pharmacokinetic (PK) modelling. Patients and Methods Retrospective data of 128 nonsevere HA patients (age 7–75 years) receiving an intravenous or intranasal dose of desmopressin were used. PK modelling of FVIII:C was performed by nonlinear mixed effect modelling. Reproducibility of FVIII:C response was defined as less than 25% difference in peak FVIII:C between administrations. Results A total of 623 FVIII:C measurements from 142 desmopressin administrations were available; 14 patients had received two administrations at different occasions. The FVIII:C time profile was best described by a two-compartment model with first-order absorption and elimination. Interindividual variability of the estimated baseline FVIII:C, central volume of distribution and clearance were 37, 43 and 50%, respectively. The most recently measured FVIII:C (FVIII-recent) was significantly associated with FVIII:C response to desmopressin (p < 0.001). Desmopressin administration resulted in an absolute FVIII:C increase of 0.47 IU/mL (median, interquartile range: 0.32–0.65 IU/mL, n = 142). FVIII:C response was reproducible in 6 out of 14 patients receiving two desmopressin administrations. Conclusion FVIII:C response to desmopressin in nonsevere HA patients was adequately described by a population PK model. Large variability in FVIII:C response was observed, which could only partially be explained by FVIII-recent. FVIII:C response was not reproducible in a small subset of patients. Therefore, monitoring FVIII:C around surgeries or bleeding might be considered. Research is needed to study this further.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2768
Author(s):  
Bram C. Agema ◽  
Astrid W. Oosten ◽  
Sebastiaan D. T. Sassen ◽  
Wim J. R. Rietdijk ◽  
Carin C. D. van der Rijt ◽  
...  

Oxycodone is frequently used for treating cancer-related pain, while not much is known about the factors that influence treatment outcomes in these patients. We aim to unravel these factors by developing a population-pharmacokinetic model to assess the pharmacokinetics of oxycodone and its metabolites in cancer patients, and to associate this with pain scores, and adverse events. Hospitalized patients with cancer-related pain, who were treated with oral oxycodone, could participate. Pharmacokinetic samples and patient-reported pain scores and occurrence and severity of nine adverse events were taken every 12 h. In 28 patients, 302 pharmacokinetic samples were collected. A one-compartment model for oxycodone and each metabolite best described oxycodone, nor-oxycodone, and nor-oxymorphone pharmacokinetics. Furthermore, oxycodone exposure was not associated with average and maximal pain scores, and oxycodone, nor-oxycodone, and nor-oxymorphone exposure were not associated with adverse events (all p > 0.05). This is the first model to describe the pharmacokinetics of oxycodone including the metabolites nor-oxycodone and nor-oxymorphone in hospitalized patients with cancer pain. Additional research, including more patients and a more timely collection of pharmacodynamic data, is needed to further elucidate oxycodone (metabolite) pharmacokinetic/pharmacodynamic relationships. This model is an important starting point for further studies to optimize oxycodone dosing regiments in patients with cancer-related pain.


2014 ◽  
Vol 58 (8) ◽  
pp. 4718-4726 ◽  
Author(s):  
Ping Liu ◽  
Diane R. Mould

ABSTRACTTo assess the pharmacokinetics (PK) of voriconazole and anidulafungin in patients with invasive aspergillosis (IA) in comparison with other populations, sparse PK data were obtained for 305 adults from a prospective phase 3 study comparing voriconazole and anidulafungin in combination versus voriconazole monotherapy (voriconazole, 6 mg/kg intravenously [IV] every 12 h [q12h] for 24 h followed by 4 mg/kg IV q12h, switched to 300 mg orally q12h as appropriate; with placebo or anidulafungin IV, a 200-mg loading dose followed by 100 mg q24h). Voriconazole PK was described by a two-compartment model with first-order absorption and mixed linear and time-dependent nonlinear (Michaelis-Menten) elimination; anidulafungin PK was described by a two-compartment model with first-order elimination. For voriconazole, the normal inverse Wishart prior approach was implemented to stabilize the model. Compared to previous models, no new covariates were identified for voriconazole or anidulafungin. PK parameter estimates of voriconazole and anidulafungin are in agreement with those reported previously except for voriconazole clearance (the nonlinear clearance component became minimal). At a 4-mg/kg IV dose, voriconazole exposure tended to increase slightly as age, weight, or body mass index increased, but the difference was not considered clinically relevant. Estimated voriconazole exposures in IA patients at 4 mg/kg IV were higher than those reported for healthy adults (e.g., the average area under the curve over a 12-hour dosing interval [AUC0–12] at steady state was 46% higher); while it is not definitive, age and concomitant medications may impact this difference. Estimated anidulafungin exposures in IA patients were comparable to those reported for the general patient population. This study was approved by the appropriate institutional review boards or ethics committees and registered on ClinicalTrials.gov (NCT00531479).


Author(s):  
Antonin Praet ◽  
Laurent Bourguignon ◽  
Florence Vetele ◽  
Valentine Breant ◽  
Charlotte Genestet ◽  
...  

Initial dosing and dose adjustment of intravenous tobramycin in cystic fibrosis children is challenging. The objectives of this study were to develop nonparametric population pharmacokinetic (PK) models of tobramycin in children with CF to be used for dosage design and model-guided therapeutic drug monitoring. We performed a retrospective analysis of tobramycin PK data in our CF children center. The Pmetrics package was used for nonparametric population PK analysis and dosing simulations. Both the maximal concentration over the MIC (Cmax/MIC) and daily area under the concentration-time curve to the MIC (AUC 24 /MIC) ratios were considered as efficacy target. Trough concentration (Cmin) was considered as the safety target. A total of 2884 tobramycin concentrations collected in 195 patients over 9 years were analyzed. A two-compartment model including total body weight, body surface area and creatinine clearance as covariates best described the data. A simpler model was also derived for implementation into the BestDose software to perform Bayesian dose adjustment. Both models were externally validated. PK/PD simulations with the final model suggest that an initial dose of tobramycin of 15 to 17.5 mg/kg/day was necessary to achieve Cmax/MIC ≥ 10 values for MIC values up to 2 mg/L in most patients. The AUC 24 /MIC target was associated with larger dosage requirements and higher Cmin. A daily dose of 12.5 mg/kg would optimize both efficacy and safety target attainment. We recommend to perform tobramycin TDM, model-based dose adjustment, and MIC determination to individualize intravenous tobramycin therapy in children with CF.


2019 ◽  
Vol 104 (6) ◽  
pp. e3.1-e3
Author(s):  
T van Donge ◽  
S Samiee-Zafarghandy ◽  
M Pfister ◽  
G Koch ◽  
M Kalani ◽  
...  

AimsA dramatic increase in newborn infants with neonatal abstinence syndrome has been observed and these neonates are frequently treated with complex methadone dosing schemes to control their withdrawal symptoms. Despite its abundant use, hardly any data on the pharmacokinetics of methadone is available in preterm neonates. Therefore we investigated developmental pharmacokinetics of methadone and evaluated current dosing strategies and possible simplification in this vulnerable population.MethodsA single center open-label prospective study was performed to collect pharmacokinetic data after a single oral dose of methadone in preterm neonates. A population pharmacokinetic model was built to characterize developmental pharmacokinetics of methadone and to assess the effects of weight and age on clearance and volume of distribution. In addition, simulation techniques were applied to evaluate reported dosing scenarios, investigate methadone exposure levels and examine the feasibility of simplified dosing recommendations.ResultsIn total, 121 methadone concentrations were collected from 31 preterm neonates. The median weight and gestational age amounted 1.6 kg and 32 weeks, respectively. A one-compartment model with first order absorption and elimination kinetics best described the data for (R)- and (S)-methadone. Clearance was observed to be higher for the (R)-enantiomer as compared to the (S)-enantiomer (0.244 versus 0.167 L/h). Target exposures, based on simulations, can be maintained with a simplified dosing strategy during the first four days of treatment. It is therefore questionable if there is a need for the currently used more extended dosing regimen of methadone in neonates.conclusionsThis clinical investigation demonstrates that the clearance of methadone increases with advancing gestational age and higher clearance values and volumes of distribution can be observed for (R)-methadone as compared to (S)-methadone in preterm neonates. Simulations that account for developmental pharmacokinetics indicate that a simplified methadone dosing strategy can maintain target exposure to control withdrawal symptoms in preterm neonates.Disclosure(s)Nothing to disclose


2019 ◽  
Vol 74 (8) ◽  
pp. 2128-2138 ◽  
Author(s):  
Evelyne Jacqz-Aigrain ◽  
Stéphanie Leroux ◽  
Alison H Thomson ◽  
Karel Allegaert ◽  
Edmund V Capparelli ◽  
...  

Abstract Objectives In the absence of consensus, the present meta-analysis was performed to determine an optimal dosing regimen of vancomycin for neonates. Methods A ‘meta-model’ with 4894 concentrations from 1631 neonates was built using NONMEM, and Monte Carlo simulations were performed to design an optimal intermittent infusion, aiming to reach a target AUC0–24 of 400 mg·h/L at steady-state in at least 80% of neonates. Results A two-compartment model best fitted the data. Current weight, postmenstrual age (PMA) and serum creatinine were the significant covariates for CL. After model validation, simulations showed that a loading dose (25 mg/kg) and a maintenance dose (15 mg/kg q12h if <35 weeks PMA and 15 mg/kg q8h if ≥35 weeks PMA) achieved the AUC0–24 target earlier than a standard ‘Blue Book’ dosage regimen in >89% of the treated patients. Conclusions The results of a population meta-analysis of vancomycin data have been used to develop a new dosing regimen for neonatal use and to assist in the design of the model-based, multinational European trial, NeoVanc.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Jose Francis ◽  
Simbarashe P. Zvada ◽  
Paolo Denti ◽  
Mark Hatherill ◽  
Salome Charalambous ◽  
...  

ABSTRACT Rifapentine is a rifamycin used to treat tuberculosis. As is the case for rifampin, plasma exposures of rifapentine are associated with the treatment response. While concomitant food intake and HIV infection explain part of the pharmacokinetic variability associated with rifapentine, few studies have evaluated the contribution of genetic polymorphisms. We evaluated the effects of functionally significant polymorphisms of the genes encoding OATP1B1, the pregnane X receptor (PXR), constitutive androstane (CAR), and arylacetamide deacetylase (AADAC) on rifapentine exposure. Two studies evaluating novel regimens among southern African patients with drug-susceptible pulmonary tuberculosis were included in this analysis. In the RIFAQUIN study, rifapentine was administered in the continuation phase of antituberculosis treatment in 1,200-mg-once-weekly or 900-mg-twice-weekly doses. In the Daily RPE study, 450 or 600 mg was given daily during the intensive phase of treatment. Nonlinear mixed-effects modeling was used to describe the pharmacokinetics of rifapentine and to identify significant covariates. A total of 1,144 drug concentration measurements from 326 patients were included in the analysis. Pharmacogenetic information was available for 162 patients. A one-compartment model with first-order elimination and transit compartment absorption described the data well. In a typical patient (body weight, 56 kg; fat-free mass, 45 kg), the values of clearance and volume of distribution were 1.33 liters/h and 25 liters, respectively. Patients carrying the AA variant (65.4%) of AADAC rs1803155 were found to have a 10.4% lower clearance. HIV-infected patients had a 21.9% lower bioavailability. Once-weekly doses of 1,200 mg were associated with a reduced clearance (13.2%) compared to that achieved with more frequently administered doses. Bioavailability was 23.3% lower among patients participating in the Daily RPE study than in those participating in the RIFAQUIN study. This is the first study to report the effect of AADAC rs1803155AA on rifapentine clearance. The observed increase in exposure is modest and unlikely to be of clinical relevance. The difference in bioavailability between the two studies is probably related to the differences in food intake concomitant with the dose. HIV-coinfected patients had lower rifapentine exposures.


2011 ◽  
Vol 56 (1) ◽  
pp. 536-543 ◽  
Author(s):  
Gudrun Würthwein ◽  
Charlotte Young ◽  
Claudia Lanvers-Kaminsky ◽  
Georg Hempel ◽  
Mirjam N. Trame ◽  
...  

ABSTRACTLiposomal amphotericin B (LAMB) and caspofungin (CAS) are important antifungal agents in allogeneic hematopoietic stem cell transplant (aHSCT) recipients. Little is known, however, about the pharmacokinetics (PK) of both agents and their combination in this population. The PK of LAMB and CAS and the potential for PK interactions between both agents were investigated within a risk-stratified, randomized phase II clinical trial in 53 adult aHSCT recipients with granulocytopenia and refractory fever. Patients received either LAMB (n= 17; 3 mg/kg once a day [QD]), CAS (n= 19; 50 mg QD; day 1, 70 mg), or the combination of both (CAS-LAMB;n= 17) for a median duration of 10 to 13 days (range, 4 to 28 days) until defervescence and granulocyte recovery. PK sampling was performed on days 1 and 4. Drug concentrations in plasma (LAMB, 405 samples; CAS, 458 samples) were quantified by high-pressure liquid chromatography and were analyzed using population pharmacokinetic modeling. CAS concentration data best fitted a two-compartment model with a proportional error model and interindividual variability (IIV) for clearance (CL) and central volume of distribution (V1) (CL, 0.462 liter/h ± 25%;V1, 8.33 liters ± 29%; intercompartmental clearance [Q], 1.25 liters/h; peripheral volume of distribution [V2], 3.59 liters). Concentration data for LAMB best fitted a two-compartment model with a proportional error model and IIV for all parameters (CL, 1.22 liters/h ± 64%;V1, 19.2 liters ± 38%;Q, 2.18 liters/h ± 47%;V2, 52.8 liters ± 84%). Internal model validation showed predictability and robustness of both models. None of the covariates tested (LAMB or CAS comedication, gender, body weight, age, body surface area, serum bilirubin, and creatinine clearance) further improved the models. In summary, the disposition of LAMB and CAS was best described by two-compartment models. Drug exposures in aHSCT patients were comparable to those in other populations, and no PK interactions were observed between the two compounds.


Sign in / Sign up

Export Citation Format

Share Document