scholarly journals P18 Provocation of paediatric hearts – a safe and smart solution

2020 ◽  
Vol 105 (9) ◽  
pp. e15.1-e15
Author(s):  
Moninne Howlett ◽  
Anne Fitzpatrick ◽  
Terence Prendiville

AimsProvocation challenges are used to diagnose certain inherited life-threatening cardiac conditions; treatment can prevent malignant arrhythmias and sudden death. Provocation medications are administered to unmask pathognomic conduction characteristics on real-time electrocardiography. Pre-prepared rescue medications are administered should a ventricular arrhythmia be unintentionally provoked. These high-risk medications, in line with safety agency recommendations, should be delivered using smart-pump technology.1 They are also often unlicensed and expensive.2 We investigated the utilisation of smart-pumps and development of a guideline to optimise medicines management and safety of these procedures in an Irish tertiary paediatric hospital.MethodsPublished literature and current practices, including those in other paediatric and adult hospitals in Ireland and the UK, were reviewed to ascertain appropriate dosing and administration in the paediatric population.3 4 Multi-disciplinary input from nursing, cardiology, pharmacy and biomedical engineering was sought in guideline development.ResultsEvidence for such challenges in paediatrics is sparse. Suitable dosing was agreed and an indication-specific smart-pump drug library created. The ‘PCA Therapy’ module was employed to deliver repeated weight-based doses of the provocation medication (Ajmaline) in a controlled and timely manner; the rescue medication (Isoprenaline) was programmed as a continuous infusion. An auxillary calculator was developed in Microsoft Excel® to direct staff on preparation of both infusion solutions and bolus doses of medications to be manually administered (Magnesium and Isoprenaline). In 2017, relevant staff were trained, and the ‘Ajmaline Challenge’ guideline was approved and implemented in the Cardiac Catherisation Laboratory (CCL) and Cardiac Day Unit. Estimated cost savings of €19,400 were realised between January 2017 - October 2018 due to reduced wastage of unused medications. Further savings are likely due to decreased utilisation of the CCL.ConclusionMulti-disciplinary collaboration and health technology can improve the safety and cost-effectiveness of high-risk cardiac diagnostic procedures in the paediatric setting. Similar processes for other provocation challenges are under development.ReferencesInstitute for Safe Medication Practices, ISMP. 2018–2019 Targeted Medication Safety Best Practices for Hospitals 2018 [Available from: https://www.ismp.org/sites/default/files/attachments/2017-12/TMSBP-for-Hospitalsv2.pdf [Accessed: June 2019]European Commission. State of Paediatric Medicines in the EU - 10 years of the EU Paediatric Regulation 2017 [Available from: https://ec.europa.eu/health/sites/health/files/files/paediatrics/docs/2017_childrensmedicines_report_en.pdf [Accessed: June 2019]McMillan MR, Day TG, Bartsota M, et al. Feasibility and outcomes of ajmaline provocation testing for Brugada syndrome in children in a specialist paediatric inherited cardiovascular diseases centre. Open Heart 2014;1:e000023.Rolf S, Bruns HJ, Wichter T, et al. The ajmaline challenge in Brugada syndrome: diagnostic impact, safety, and recommended protocol. Eur Heart J. 2003;24:1104–12.

2020 ◽  
Vol 105 (9) ◽  
pp. e18.1-e18
Author(s):  
Dilawar Khan ◽  
Daniel Kirby ◽  
Simon Bryson ◽  
Maryam Shah ◽  
Mohammed Afzal

Background & AimAs part of the EU paediatric regulation, the paediatric use marketing authorisation (PUMA) was introduced, with an aim to stimulate research in existing compounds that are off-patent and/or to help transform known off-label use into authorised use.1 However, success has been limited, with only a few products gaining a PUMA, such as Sialanar 320 micrograms/mL glycopyrronium (equivalent to 400 micrograms/mL glycopyrronium bromide). A distinct challenge to overcome in this area is the development of more ‘age appropriate formulations’, particularly with an excipient composition and load that is suitable for paediatric patients. This project aims to establish an excipient screening platform, supplemented with analytical characterisation of materials, which will act as a decision making tool to accelerate and de-risk the production of age appropriate paediatric medicines.MethodTo develop this excipient screening platform, a list of drugs that require an age appropriate formulation was produced using the ‘needs for paediatric medicines’ documents provided by the European medicines agency (EMA),2whilst common problematic excipients in paediatrics were identified using an EMA reflection paper.3 Literature and prescribing data were also reviewed to ensure drugs selected would benefit from an age appropriate formulation. Differential scanning calorimetry (DSC) to determine compatibility of selected drugs with widely used excipients was carried out using a TA DSCQ200 instrument (TA Instruments, New Castle, DE) with TA Instruments Universal Analysis 2000 software. Data was collected under nitrogen atmosphere (50 mL min−1) using pierced flat-bottomed TZero aluminium pans (sample mass about 2 mg) and heating rate of 10 °C min−1 in the range from 50 to 400°C. For samples containing both the drug and an excipient, 1 mg of each was measured out and gently mixed with a spatula for one minute.ResultsThe most common class of drugs identified as requiring age appropriate formulations were related to cardiovascular disorders and neurology, whilst the majority of drugs identified also exhibit poor aqueous solubilities. Some identified problematic excipients include ethanol, sodium benzoate and sorbitol; however, these excipients may still be used in paediatric formulations, as long as they are below certain concentrations (for example, ethanol concentration should not exceed 0.5% w/v for under 6 years old). Two drugs identified through the initial screening, carvedilol and nifedipine, were analysed by DSC, alone and then alongside starch from corn and starch 1500; the resulting DSC curves showed no changes in peak size, position (peak onset temperatures for nifedipine and carvedilol were observed at 173.2°C and 117.3°C, respectively) and shape, as well as no additional peaks, therefore suggesting compatibility between the tested samples.ConclusionThis first phase of the development of an excipient screening platform will continue to scan several different excipients with selected active pharmaceutical ingredients (APIs) in order to create compatibility profiles. The excipient screening platform generated will accelerate and de-risk the production of age appropriate formulations, as it would allow screening for potential incompatibilities and acceptability, alongside informing formulation of appropriate oral paediatric dosage forms.ReferencesEuropean Commission. State of Paediatric Medicines in the EU. 10 years of the EU Paediatric Regulation. COM (2017) 626. Available at: https://ec.europa.eu/health/sites/health/files/files/paediatrics/docs/2017_childrensmedicines_report_en.pdfNeeds for paediatric medicines - European Medicines Agency [Internet]. 2019 [cited 28 June 2019]. Available from: https://www.ema.europa.eu/en/human-regulatory/research-development/paediatric-medicines/needs-paediatric-medicinesReflection paper: formulations of choice for the paediatric population [Internet]. European Medicines Agency. 2019 [cited 28 June 2019]. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-formulations-choice-paediatric-population_en.pdf


2020 ◽  
Vol 105 (9) ◽  
pp. e23.1-e23
Author(s):  
Orlagh McGarrity ◽  
Aliya Pabani

Introduction, Aims and ObjectivesIn 2011 the Start Smart then Focus campaign was launched by Public Health England (PHE) to combat antimicrobial resistance.1 The ‘focus’ element refers to the antimicrobial review at 48–72 hours, when a decision and documentation regarding infection management should be made. [OM1] At this tertiary/quaternary paediatric hospital we treat, immunocompromised, high risk patients. In a recent audit it was identified that 80% of antimicrobial use is IV, this may be due to several factors including good central access, centrally prepared IV therapy and oral agents being challenging to administer to children. The aim of the audit was to assess if patient have a blood culture prior to starting therapy, have a senior review at 48–72 hours, and thirdly if our high proportion of intravenous antimicrobial use is justified.MethodElectronic prescribing data from JAC was collected retrospectively over an 8 day period. IV antimicrobials for which there is a suitable oral alternative, this was defined as >80% bioavailability, were included. Patients were excluded in the ICU, cancer and transplant setting, those with absorption issues and with a high risk infection, such as endocarditis or bacteraemia. Patient were assessed against a set criteria to determine if they were eligible to switch from IV to PO therapy; afebrile, stable blood pressure, heart rate <90/min, respiratory rate < 20/min for 24 hours. Reducing CRP, reducing white cell count, blood cultures negative or sensitive to an antibiotic that can be given orally.Results100% of patients (11) had a blood cultures taken within 72 hours of starting therapy55% of patients had a positive blood culture82% of patients had a senior review at 48–72 hours46% of patients were eligible to switch from IV to PO therapy at 72 hours33% of eligible patients were switched from IV to PO therapy at 72 hoursConclusion and RecommendationsThis audit had a low sample size due to the complexity of the inclusion and exclusion criteria, and the difficulty in reviewing patient parameters on many different hospital interfaces. It is known that each patient is reviewed at least 24 hourly on most wards and therefore there is a need for improved documentation of prescribing decisions. Implementation of an IV to oral switch guideline is recommended to support prescribing decisions and educate and reassure clinicians on the bioavailability and benefits of PO antimicrobial therapy where appropriate. Having recently changed electronic patient management systems strategies to explore include hard stops on IV antimicrobial therapies, however this will require much consideration. Education of pharmacist and nurses is required to raise awareness about antimicrobial resistance and the benefits of IV to PO switches, despite the ease of this therapy at out Trust. This will promote a culture in which all healthcare professionals are active antimicrobial guardians, leading to better patient outcomes, less service pressures, and long term financial benefit.ReferenceGOV.UK. 2019. Antimicrobial stewardship: Start smart - then focus. [ONLINE]Available at: https://www.gov.uk/government/publications/antimicrobial-stewardship-start-smart-then-focus [Accessed 3 July 2019]


2019 ◽  
Vol 36 (9) ◽  
pp. 529-534
Author(s):  
Jen Heng Pek ◽  
Yong-Kwang Gene Ong ◽  
En Ci Samuel Quek ◽  
Xun Yi Jasmine Feng ◽  
John Carson Allen Jr ◽  
...  

BackgroundTrauma team activation criteria have a variable performance in the paediatric population. We aimed to identify predictors for high-level resource utilisation during trauma resuscitation in the ED.MethodsA retrospective study was conducted in the ED of a tertiary paediatric hospital. Patient data were collected from trauma surveillance registry and analysis was performed to identify significant predictors. We then assessed the sensitivity and specificity of proposed models with respect to observed patient outcomes.ResultsAmong 11 282 cases, the mean age was 6.1±4.9 (SD) years old. Fall was the most common mechanism of injury in 7364 (65.3%) patients. Eighty-eight (0.8%) patients required at least one high-level resource. Significant predictors for high-resource utilisation were overall GCS of <14 (relative risk (RR) 38.841, 95% CI 21.328 to 70.739, p<0.001), high-risk mechanisms of fall from height and motor vehicle collision (RR 7.863, 95% CI 4.687 to 13.192, p<0.001), as well as age-specific tachycardia (RR 1.796, 95% CI 1.145 to 2.817, p=0.0108). A model consisting of GCS and high-risk mechanism would under-triage 21 (0.2%) patients and over-triage 681 (6.0%) patients. When age-specific tachycardia was added, 8 (0.1%) less patients would be under-triaged but an additional 3251 (28.9%) patients would be over-triaged.ConclusionAs utilisation of high-level resources in paediatric trauma was rare, it was difficult to find an appropriate balance between under-triage and over-triage. Between the two, minimising the proportion of under-triage is more important as patient safety is paramount in paediatric trauma care.


2020 ◽  
Vol 105 (9) ◽  
pp. e15.2-e16
Author(s):  
Moninne Howlett ◽  
Erika Brereton ◽  
Cormac Breatnach ◽  
Brian Cleary

AimsProcesses for delivery of high-risk infusions in paediatric intensive care units (PICUs) are complex. Standard concentration infusions (SCIs), smart-pumps and electronic prescribing are recommended medication error reduction strategies.1 2 Implementation rates are low in Irish and UK hospitals.2 3 Since 2012, the PICU of an Irish tertiary paediatric hospital has been using a smart-pump SCI library, interfaced with electronic infusion orders (Philips ICCA®). The incidence of infusion errors is unknown. This study aims to determine the frequency, severity and distribution of smart-pump infusion errors and to identify contributory factors to the occurrence of infusion errors.MethodsProgrammed infusions are directly observed at the bedside. Parameters are compared against medication orders and auto-populated infusion data. Identified deviations are categorised as either medication errors or discrepancies. Five opportunities for error (OEs) were identified: programming, administration, documentation, assignment, data transfer. Error rates (%) are calculated as: infusions with errors; and errors per OE. Pre-defined definitions, multi-disciplinary consensus and grading processes are employed.ResultsA total of 1023 infusions for 175 patients were directly observed on 27 days between February and September 2017. 74% of patients were under 1 year, 32% under 1 month. The drug-library accommodated 96.5% of all infusions. Compliance with the drug-library was 98.9%. 55 infusions had ≥ 1 error (5.4%); a further 67 (6.3%) had ≥ 1 discrepancy. From a total of 4997 OEs, 72 errors (1.4%) and 107 discrepancies (2.1%) were observed. Documentation errors were most common; programming errors were rare (0.32% OE). Errors are minor, with just one requiring minimal intervention to prevent harm.ConclusionThis study has highlighted the benefits of smart-pumps and auto-populated infusion data in the PICU setting. Identified error rates are low compared to similar studies.4 The findings will contribute to the limited existing knowledge base on impact of these interventions on paediatric infusion administration errors.ReferencesInstitute for Safe Medication Practices, ISMP. 2018–2019 Targeted medication safety best practices for hospitals2018 [Available from: http://www.ismp.org/tools/bestpractices/TMSBP-for-Hospitalsv2.pdf [Accessed: June 2019]Oskarsdottir T, Harris D, Sutherland A, et al. A national scoping survey of standard infusions in paediatric and neonatal intensive care units in the United Kingdom. J Pharm Pharmacol 2018;70:1324–1331.Howlett M, Curtin M, Doherty D, Gleeson P, Sheerin M, Breatnach C. Paediatric standardised concentration infusions – A national solution. Arch Dis Child. 2016;101:e2.Blandford A, Dykes PC, Franklin BD, et al. Intravenous Infusion Administration: A comparative study of practices and errors between the United States and England and their Implications for patient safety. Drug Saf. 2019;42:1157–1165


Breathe ◽  
2016 ◽  
Vol 12 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Phyllis Murphie ◽  
Nick Hex ◽  
Jo Setters ◽  
Stuart Little

“Non-delivery” home oxygen technologies that allow self-filling of ambulatory oxygen cylinders are emerging. They can offer a relatively unlimited supply of ambulatory oxygen in suitably assessed people who require long-term oxygen therapy (LTOT), providing they can use these systems safely and effectively. This allows users to be self-sufficient and facilitates longer periods of time away from home. The evolution and evidence base of this technology is reported with the experience of a national service review in Scotland (UK). Given that domiciliary oxygen services represent a significant cost to healthcare providers globally, these systems offer potential cost savings, are appealing to remote and rural regions due to the avoidance of cylinder delivery and have additional lower environmental impact due to reduced fossil fuel consumption and subsequently reduced carbon emissions. Evidence is emerging that self-fill/non-delivery oxygen systems can meet the ambulatory oxygen needs of many patients using LTOT and can have a positive impact on quality of life, increase time spent away from home and offer significant financial savings to healthcare providers.Educational aimsProvide update for oxygen prescribers on options for home oxygen provision.Provide update on the evidence base for available self-fill oxygen technologies.Provide and update for healthcare commissioners on the potential cost-effective and environmental benefits of increased utilisation of self-fill oxygen systems.


Author(s):  
Robert I. Roth ◽  
Nicholas M. Fleischer

Recent years have seen the approvals, more so in the EU than the United States, of follow-on biological drugs. These products have been new formulations of recombinant therapeutic proteins, developed to compete with the marketed originator products. Intended to closely mimic the originator products in terms of chemistry and therapeutic properties, these so-called ‘biosimilar’ products were initially conceived to be developed according to abbreviated development programmes, presumably at a substantial cost savings to both the drug developer and the consumer. With several such products now recently approved, however, it has become clear that their development programmes have been quite extensive and not particularly abbreviated. Accordingly, cost savings to consumers appear to be relatively modest.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A330-A330
Author(s):  
Diwakar Davar ◽  
Arivarasan Karunamurthy ◽  
Douglas Hartman ◽  
Richelle DeBlasio ◽  
Joe-Marc Chauvin ◽  
...  

BackgroundNeoadjuvant PD-1 blockade produces major pathological responses (MPR) in ~30% of patients (pts) with high-risk resectable melanoma (MEL) with durable relapse-free benefit, and increased circulating activated CD8+ T cells.1 2 CMP-001 is a type A CpG packaged within a virus-like particle that activates tumor-associated plasmacytoid dendritic cells (pDC) via TLR9 inducing type I interferons and anti-tumor CD8+ T cells. CMP-001/pembrolizumab produces durable anti-tumor responses in PD-1 refractory melanoma.3 We previously reported preliminary evidence of efficacy of neoadjuvant IT CMP/Nivo in high-risk resectable MEL; and herein present final results on 30 evaluable patients.Methods30 pts with stage III B/C/D MEL were enrolled. Pre-operatively, CMP-001 was dosed at 5 mg subcutaneous (SC, 1st), then 10 mg IT (2nd-7th) weekly; Nivo was dosed 240 mg q2 weeks for 3 doses – both agents given for 7 weeks. Post-operatively, Nivo was dosed 480 mg q4 weeks with CMP-001 5 mg q4 weeks SC for 48 weeks. Primary endpoints included major pathologic response rate (MPR), and incidence of dose-limiting toxicities (DLT). Secondary endpoints were radiographic response, relapse-free survival (RFS) and overall survival (OS). Pathological response was scored blinded by pathologists based on residual volume of tumor (RVT) using prior specified cutoffs:4 60% (complete response, pCR); 0%<rvt<rvt50% (non-response, pNR). Radiographic response was assessed using RECIST v1.1. Sequential blood draws and tumor biopsies were collected and analyzed for CD8+ T cell infiltrate (TIL), multiparameter flow cytometry (MFC) and multiplex immunofluorescence (mIF).Results30 pts with regionally advanced MEL were enrolled, of stages IIIB (57%), IIIC (37%), IIID (7%). 29/30 (97%) of pts completed 7 weeks of neoadjuvant Nivo/CMP; while 1 pt had a delay in surgery related to a pre-operative infection unrelated to therapy. No DLTs were reported; grade 3/4 irAE were reported in 3 pts (11%) leading to CMP-001 discontinuation in 2 pts (7%). Radiographic responses were seen in 13 pts (43%), while 9 pts (30%) had stable disease and 8 pts (27%) had progressive disease. Pathological responses (RVT <50%) were seen in 70% of pts: pCR 15 (50%), pMR 3 (10%), 3 pPR (10%); only 9 (30%) had pNR. Pathological responders (pCR/pMR) had increased CD8+ TIL and CD303+ pDC intra-tumorally by mIF; and peripherally activated PD1+/Ki67+ CD8+ T cells by MFC.ConclusionsNeoadjuvant CMP/Nivo has acceptable toxicity and promising efficacy. MPR is 60% in 30 pts. 1-year RFS was 82% (all pts) and 89% (among those with pCR/pMR); median RFS is 9 months (among pNR/pPR) and not reached (among pCR/pMR). Response is associated with evidence of immune activation intra-tumorally and peripherally. IT CMP001 increases clinical efficacy of PD-1 blockade with minimal additional toxicity in pts with regionally advanced MEL. Further study of this combination in high-risk resectable MEL is planned.AcknowledgementsWe thank Dr. Jagjit Singh and the pathology grossing room staff for their assistance and Checkmate Pharmaceuticals for funding and CMP-001.Trial RegistrationClinical trial information: NCT03618641Ethics ApprovalThe study was approved by University of Pittsburgh’s Institutional Review Board, approval number MOD19040237-002.ConsentWritten informed consent was obtained from the patient for publication of this abstract and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.ReferencesAmaria RN, Reddy SM, Tawbi HA, et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med 2018. Nov;24(11):1649–1654.Huang AC, Orlowski RJ, Xu X, et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat Med 2019. Mar;25(3):454–461. doi: 10.1038/s41591-019-0357-y.Milhem M, Gonzales R, Medina T, et al. Abstract CT144: Intratumoral toll-like receptor 9 (TLR9) agonist, CMP-001, in combination with pembrolizumab can reverse resistance to PD-1 inhibition in a phase Ib trial in subjects with advanced melanoma. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14–18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract CT144.Tetzlaff MT, Messina JL, Stein JE, et al. Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma. Ann Oncol 2018. Aug 1;29(8):1861–1868.Cottrell TR, Thompson ED, Forde PM, et al. Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC). Ann Oncol 2018 Aug 1;29(8):1853–1860. doi: 10.1093/annonc/mdy218.Stein JE, Soni A, Danilova L, et al. Major pathologic response on biopsy (MPRbx) in patients with advanced melanoma treated with anti-PD-1: evidence for an early, on-therapy biomarker of response. Ann Oncol 2019 Apr 1;30(4):589–596. doi: 10.1093/annonc/mdz019.


2015 ◽  
Vol 191 ◽  
pp. 90-96 ◽  
Author(s):  
Sophie C.H. Van Malderen ◽  
Dirk Kerkhove ◽  
Dominic A.M.J. Theuns ◽  
Caroline Weytjens ◽  
Steven Droogmans ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document