scholarly journals Mesenchymal stem cells in rheumatoid synovium: enumeration and functional assessment in relation to synovial inflammation level

2009 ◽  
Vol 69 (2) ◽  
pp. 450-457 ◽  
Author(s):  
E Jones ◽  
S M Churchman ◽  
A English ◽  
M H Buch ◽  
E A Horner ◽  
...  

Objective:Achieving joint regeneration in rheumatoid arthritis (RA) represents a future challenge. Autologous synovial mesenchymal stem cells (MSCs) could be therapeutically exploited. However, the inflammatory milieu in the RA synovium could adversely affect endogenous MSC function. To test this hypothesis, the frequency and multipotency of RA synovial MSCs was evaluated in relation to existing synovial inflammation.Methods:Synovial inflammation was measured using the arthroscopic visual analogue score (VAS) and further validated using immunohistochemistry and flow cytometry. Highly proliferative clonogenic in vivo MSCs were enumerated following fluorescence-activated cell sorting and expansion for 20 population doublings. MSC multipotency was quantified following standard in vitro culture expansion and trilineage differentiation assays. Real-time PCR, flow cytometry and ELISA were used to evaluate pro- and anti-chondrogenic molecules in standard polyclonal synovial MSCs.Results:The arthroscopic VAS significantly correlated with synovial macrophage infiltration. In RA, synovial MSC chondrogenesis was inhibited in direct relation to VAS (r = −0.777, p<0.05) and reduced compared with control osteoarthritis (OA)-MSCs (p<0.05). In vivo, MSCs resided in the synovial fibroblastic/stromal fraction (CD45−CD31−) and were reduced in frequency in relation to VAS (r = −0.695, p<0.05). In RA-MSCs, CD44 levels correlated negatively with inflammation and positively with chondrogenesis (r = −0.830 and r = 0.865, respectively). Cytokine production and Sox9 expression was similar in RA-MSCs and OA-MSCs.Conclusions:There is a negative relationship between synovial MSC chondrogenic and clonogenic capacities and the magnitude of synovitis in RA. Effective suppression of joint inflammation is therefore necessary for the development of autologous MSC treatments aimed at cartilage regeneration in RA.

2013 ◽  
Vol 815 ◽  
pp. 345-349 ◽  
Author(s):  
Ching Wen Hsu ◽  
Ping Liu ◽  
Song Song Zhu ◽  
Feng Deng ◽  
Bi Zhang

Here we reported a combined technique for articular cartilage repair, consisting of bone arrow mesenchymal stem cells (BMMSCs) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers carried with tissue growth factor (TGF-belat1). In the present study, BMMSCs seeded on PLGA-PEG-PLGA with were incubated in vitro, carried or not TGF-belta1, Then the effects of the composite on repair of cartilage defect were evaluated in rabbit knee joints in vivo. Full-thickness cartilage defects (diameter: 5 mm; depth: 3 mm) in the patellar groove were either left empty (n=18), implanted with BMMSCs/PLGA (n=18), TGF-belta1 modified BMMSCs/PLGA-PEG-PLGA. The defect area was examined grossly, histologically at 6, 24 weeks postoperatively. After implantation, the BMMSCs /PLGA-PEG-PLGA with TGF-belta1 group showed successful hyaline-like cartilage regeneration similar to normal cartilage, which was superior to the other groups using gross examination, qualitative and quantitative histology. These findings suggested that a combination of BMMSCs/PLGA-PEG-PLGA carried with tissue growth factor (TGF-belat1) may be an alternative treatment for large osteochondral defects in high loading sites.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammed Zayed ◽  
Steven Newby ◽  
Nabil Misk ◽  
Robert Donnell ◽  
Madhu Dhar

Horses are widely used as large animal preclinical models for cartilage repair studies, and hence, there is an interest in using equine synovial fluid-derived mesenchymal stem cells (SFMSCs) in research and clinical applications. Since, we have previously reported that similar to bone marrow-derived MSCs (BMMSCs), SFMSCs may also exhibit donor-to-donor variations in their stem cell properties; the current study was carried out as a proof-of-concept study, to compare the in vivo potential of equine BMMSCs and SFMSCs in articular cartilage repair. MSCs from these two sources were isolated from the same equine donor. In vitro analyses confirmed a significant increase in COMP expression in SFMSCs at day 14. The cells were then encapsulated in neutral agarose scaffold constructs and were implanted into two mm diameter full-thickness articular cartilage defect in trochlear grooves of the rat femur. MSCs were fluorescently labeled, and one week after treatment, the knee joints were evaluated for the presence of MSCs to the injured site and at 12 weeks were evaluated macroscopically, histologically, and then by immunofluorescence for healing of the defect. The macroscopic and histological evaluations showed better healing of the articular cartilage in the MSCs’ treated knee than in the control. Interestingly, SFMSC-treated knees showed a significantly higher Col II expression, suggesting the presence of hyaline cartilage in the healed defect. Data suggests that equine SFMSCs may be a viable option for treating osteochondral defects; however, their stem cell properties require prior testing before application.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Nidia K. Moncada-Saucedo ◽  
Iván A. Marino-Martínez ◽  
Jorge Lara-Arias ◽  
Víktor J. Romero-Díaz ◽  
Alberto Camacho ◽  
...  

Articular cartilage injuries remain as a therapeutic challenge due to the limited regeneration potential of this tissue. Cartilage engineering grafts combining chondrogenic cells, scaffold materials, and microenvironmental factors are emerging as promissory alternatives. The design of an adequate scaffold resembling the physicochemical features of natural cartilage and able to support chondrogenesis in the implants is a crucial topic to solve. This study reports the development of an implant constructed with IGF1-transduced adipose-derived mesenchymal stem cells (immunophenotypes: CD105+, CD90+, CD73+, CD14-, and CD34-) embedded in a scaffold composed of a mix of alginate/milled bovine decellularized knee material which was cultivated in vitro for 28 days (3CI). Histological analyses demonstrated the distribution into isogenous groups of chondrocytes surrounded by a de novo dense extracellular matrix with balanced proportions of collagens II and I and high amounts of sulfated proteoglycans which also evidenced adequate cell proliferation and differentiation. This graft also shoved mechanical properties resembling the natural knee cartilage. A modified Bern/O’Driscoll scale showed that the 3CI implants had a significantly higher score than the 2CI implants lacking cells transduced with IGF1 (16/18 vs. 14/18), representing high-quality engineering cartilage suitable for in vivo tests. This study suggests that this graft resembles several features of typical hyaline cartilage and will be promissory for preclinical studies for cartilage regeneration.


1997 ◽  
Vol 6 (2) ◽  
pp. 125-134 ◽  
Author(s):  
S. Kadiyala ◽  
R. G. Young ◽  
M. A. Thiede ◽  
S. P. Bruder

Mesenchymal Stem Cells (MSCs) possessing the capacity to differentiate into various cell types such as osteoblasts, chondrocytes, myoblasts, and adipocytes have been previously isolated from the marrow and periosteum of human, murine, lapine, and avian species. This study documents the existence of similar multipotential stem cells in canine marrow. The cells were isolated from marrow aspirates using a modification of techniques previously established for human MSCs (hMSCs), and found to possess similar growth and morphological characteristics, as well as osteochondrogenic potential in vivo and in vitro. On the basis of these results, the multipotential cells that were isolated and culture expanded are considered to be canine MSCs (cMSCs). The occurrence of cMSCs in the marrow was determined to be one per 2.5 × 104 nucleated cells. After enrichment of the cMSCs by centrifugation on a Per-coll cushion, the cells were cultivated in selected lots of serum. Like the hMSCs, cMSCs grew as colonies in primary culture and on replating, grew as a monolayer culture with very uniform spindle morphology. The population doubling time for these cMSCs was approximately 2 days. The morphology and the growth kinetics of the cMSCs were retained following repeated passaging. The osteogenic phenotype could be induced in the cMSC cultures by the addition of a synthetic glucocorticoid, dexamethasone. In these osteogenic cultures, alkaline phosphatase activity was elevated up to 10-fold, and mineralized matrix production was evident. When cMSCs were loaded onto porous ceramics and implanted in autologous canine or athymic murine hosts, copious amounts of bone and cartilage were formed in the pores of the implants. The MSC-mediated osteogenesis obtained by the implantation of the various MSC-loaded matrix combinations is the first evidence of osteogenesis in a canine model by implantation of culture expanded autologous stem cells. The identification and isolation of cMSCs now makes it feasible to pursue preclinical models of bone and cartilage regeneration in canine hosts.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Baixiang Cheng ◽  
Teng Tu ◽  
Xiao Shi ◽  
Yanzheng Liu ◽  
Ying Zhao ◽  
...  

Abstract Background Although tissue-engineered cartilage has been broadly studied, complete integration of regenerated cartilage with residual cartilage is still difficult for the inferior mechanical and biochemical feature of neocartilage. Chondrogenesis of mesenchymal stem cells can be induced by biophysical and biochemical factors. Methods In this study, autologous platelet-rich fibrin (PRF) membrane was used as a growth factor-rich scaffold that may facilitate differentiation of the transplanted bone marrow mesenchymal stem cells (BMSCs). At the same time, hydrostatic pressure was adopted for pre-adjustment of the seed cells before transplantation that may promote the mechanical flexibility of neocartilage. Results An in vitro study showed that the feasible hydrostatic pressure stimulation substantially promoted the chondrogenic potential of in vitro-cultured BMSC/PRF construct. In vivo results revealed that at every time point, the newborn tissues were the most favorable in the pressure-pretreated BMSC/PRF transplant group. Besides, the transplantation of feasible hydrostatic pressure-pretreated construct by BMSC sheet fragments and PRF granules could obviously improve the integration between the regenerated cartilage and host cartilage milieu, and thereby achieve boundaryless repair between the neocartilage and residual host cartilage tissue in rabbit temporomandibular joints. It could be concluded that feasible hydrostatic pressure may effectively promote the proliferation and chondrogenic differentiation of BMSCs in a BMSC/PRF construct. Conclusion This newly formed construct with biomechanical flexibility showed a superior capacity for cartilage regeneration by promoting the mechanical properties and integration of neocartilage.


2019 ◽  
Vol 98 (9) ◽  
pp. 350-355

Introduction: There is evidence that mesenchymal stem cells (MSCs) could trans-differentiate into the liver cells in vitro and in vivo and thus may be used as an unfailing source for stem cell therapy of liver disease. Combination of MSCs (with or without their differentiation in vitro) and minimally invasive procedures as laparoscopy or Natural Orifice Transluminal Endoscopic Surgery (NOTES) represents a chance for many patients waiting for liver transplantation in vain. Methods: Over 30 millions of autologous MSCs at passage 3 were transplanted via the portal vein in an eight months old miniature pig. The deposition of transplanted cells in liver parenchyma was evaluated histologically and the trans-differential potential of CM-DiI labeled cells was assessed by expression of pig albumin using immunofluorescence. Results: Three weeks after transplantation we detected the labeled cells (solitary, small clusters) in all 10 samples (2 samples from each lobe) but no diffuse distribution in the samples. The localization of CM-DiI+ cells was predominantly observed around the portal triads. We also detected the localization of albumin signal in CM-DiI labeled cells. Conclusion: The study results showed that the autologous MSCs (without additional hepatic differentiation in vitro) transplantation through the portal vein led to successful infiltration of intact miniature pig liver parenchyma with detectable in vivo trans-differentiation. NOTES as well as other newly developed surgical approaches in combination with cell therapy seem to be very promising for the treatment of hepatic diseases in near future.


Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 781 ◽  
Author(s):  
Paula E. Florian ◽  
Liviu Duta ◽  
Valentina Grumezescu ◽  
Gianina Popescu-Pelin ◽  
Andrei C. Popescu ◽  
...  

This study is focused on the adhesion and differentiation of the human primary mesenchymal stem cells (hMSC) to osteoblasts lineage on biological-derived hydroxyapatite (BHA) and lithium-doped BHA (BHA:LiP) coatings synthesized by Pulsed Laser Deposition. An optimum adhesion of the cells on the surface of BHA:LiP coatings compared to control (uncoated Ti) was demonstrated using immunofluorescence labelling of actin and vinculin, two proteins involved in the initiation of the cell adhesion process. BHA:LiP coatings were also found to favor the differentiation of the hMSC towards an osteoblastic phenotype in the presence of osteoinductive medium, as revealed by the evaluation of osteoblast-specific markers, osteocalcin and alkaline phosphatase. Numerous nodules of mineralization secreted from osteoblast cells grown on the surface of BHA:LiP coatings and a 3D network-like organization of cells interconnected into the extracellular matrix were evidenced. These findings highlight the good biocompatibility of the BHA coatings and demonstrate that the use of lithium as a doping agent results in an enhanced osteointegration potential of the synthesized biomaterials, which might therefore represent viable candidates for future in vivo applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
HuiYa Li ◽  
DanQing Hu ◽  
Guilin Chen ◽  
DeDong Zheng ◽  
ShuMei Li ◽  
...  

AbstractBoth weak survival ability of stem cells and hostile microenvironment are dual dilemma for cell therapy. Adropin, a bioactive substance, has been demonstrated to be cytoprotective. We therefore hypothesized that adropin may produce dual protective effects on the therapeutic potential of stem cells in myocardial infarction by employing an adropin-based dual treatment of promoting stem cell survival in vitro and modifying microenvironment in vivo. In the current study, adropin (25 ng/ml) in vitro reduced hydrogen peroxide-induced apoptosis in rat bone marrow mesenchymal stem cells (MSCs) and improved MSCs survival with increased phosphorylation of Akt and extracellular regulated protein kinases (ERK) l/2. Adropin-induced cytoprotection was blocked by the inhibitors of Akt and ERK1/2. The left main coronary artery of rats was ligated for 3 or 28 days to induce myocardial infarction. Bromodeoxyuridine (BrdU)-labeled MSCs, which were in vitro pretreated with adropin, were in vivo intramyocardially injected after ischemia, following an intravenous injection of 0.2 mg/kg adropin (dual treatment). Compared with MSCs transplantation alone, the dual treatment with adropin reported a higher level of interleukin-10, a lower level of tumor necrosis factor-α and interleukin-1β in plasma at day 3, and higher left ventricular ejection fraction and expression of paracrine factors at day 28, with less myocardial fibrosis and higher capillary density, and produced more surviving BrdU-positive cells at day 3 and 28. In conclusion, our data evidence that adropin-based dual treatment may enhance the therapeutic potential of MSCs to repair myocardium through paracrine mechanism via the pro-survival pathways.


Sign in / Sign up

Export Citation Format

Share Document