Culture Expanded Canine Mesenchymal Stem Cells Possess Osteochondrogenic Potential in Vivo and in Vitro

1997 ◽  
Vol 6 (2) ◽  
pp. 125-134 ◽  
Author(s):  
S. Kadiyala ◽  
R. G. Young ◽  
M. A. Thiede ◽  
S. P. Bruder

Mesenchymal Stem Cells (MSCs) possessing the capacity to differentiate into various cell types such as osteoblasts, chondrocytes, myoblasts, and adipocytes have been previously isolated from the marrow and periosteum of human, murine, lapine, and avian species. This study documents the existence of similar multipotential stem cells in canine marrow. The cells were isolated from marrow aspirates using a modification of techniques previously established for human MSCs (hMSCs), and found to possess similar growth and morphological characteristics, as well as osteochondrogenic potential in vivo and in vitro. On the basis of these results, the multipotential cells that were isolated and culture expanded are considered to be canine MSCs (cMSCs). The occurrence of cMSCs in the marrow was determined to be one per 2.5 × 104 nucleated cells. After enrichment of the cMSCs by centrifugation on a Per-coll cushion, the cells were cultivated in selected lots of serum. Like the hMSCs, cMSCs grew as colonies in primary culture and on replating, grew as a monolayer culture with very uniform spindle morphology. The population doubling time for these cMSCs was approximately 2 days. The morphology and the growth kinetics of the cMSCs were retained following repeated passaging. The osteogenic phenotype could be induced in the cMSC cultures by the addition of a synthetic glucocorticoid, dexamethasone. In these osteogenic cultures, alkaline phosphatase activity was elevated up to 10-fold, and mineralized matrix production was evident. When cMSCs were loaded onto porous ceramics and implanted in autologous canine or athymic murine hosts, copious amounts of bone and cartilage were formed in the pores of the implants. The MSC-mediated osteogenesis obtained by the implantation of the various MSC-loaded matrix combinations is the first evidence of osteogenesis in a canine model by implantation of culture expanded autologous stem cells. The identification and isolation of cMSCs now makes it feasible to pursue preclinical models of bone and cartilage regeneration in canine hosts.

2013 ◽  
Vol 815 ◽  
pp. 345-349 ◽  
Author(s):  
Ching Wen Hsu ◽  
Ping Liu ◽  
Song Song Zhu ◽  
Feng Deng ◽  
Bi Zhang

Here we reported a combined technique for articular cartilage repair, consisting of bone arrow mesenchymal stem cells (BMMSCs) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers carried with tissue growth factor (TGF-belat1). In the present study, BMMSCs seeded on PLGA-PEG-PLGA with were incubated in vitro, carried or not TGF-belta1, Then the effects of the composite on repair of cartilage defect were evaluated in rabbit knee joints in vivo. Full-thickness cartilage defects (diameter: 5 mm; depth: 3 mm) in the patellar groove were either left empty (n=18), implanted with BMMSCs/PLGA (n=18), TGF-belta1 modified BMMSCs/PLGA-PEG-PLGA. The defect area was examined grossly, histologically at 6, 24 weeks postoperatively. After implantation, the BMMSCs /PLGA-PEG-PLGA with TGF-belta1 group showed successful hyaline-like cartilage regeneration similar to normal cartilage, which was superior to the other groups using gross examination, qualitative and quantitative histology. These findings suggested that a combination of BMMSCs/PLGA-PEG-PLGA carried with tissue growth factor (TGF-belat1) may be an alternative treatment for large osteochondral defects in high loading sites.


2010 ◽  
Vol 93-94 ◽  
pp. 121-124
Author(s):  
Nuttapon Vachiraroj ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont

In this work, we developed a 3-dimensional bone tissue engineering scaffold from type B gelatin and hydroxyapatite. Two types of scaffolds, pure gelatin (pI~5) (Gel) and gelatin/hydroxyapatite (30/70 wt./wt.) (Gel/HA), were prepared from concentrated solutions (5% wt./wt.) using foaming/freeze drying method. The results SEM revealed the interconnected-homogeneous pores of Gel and Gel/HA were 121  119 and 148  83m, respectively. Hydroxyapatite improved mechanical property of the gelatin scaffolds, especially at dry state. Compressive modulus of Gel and Gel/HA scaffolds were at 118±21.68 and 510±109.08 kPa, respectively. The results on in vitro cells culture showed that Gel/HA scaffolds promoted attachment of rat’s mesenchymal stem cells (MSC) to a 1.23 folds higher than the Gel scaffolds. Population doubling time (PDT) of MSC on Gel and Gel/HA scaffolds were 51.16 and 54.89 hours, respectively. In term of osteogenic differentiation, Gel/HA scaffolds tended to enhance ALP activity and calcium content of MSC better than those of the Gel scaffold. Therefore the Gel/HA scaffolds had a potential to be applied in bone tissue engineering.


Biologia ◽  
2013 ◽  
Vol 68 (4) ◽  
Author(s):  
Ľuboš Danišovič ◽  
Marcela Kuniaková ◽  
Zuzana Varchulová-Nováková ◽  
Martin Boháč ◽  
Ivan Varga ◽  
...  

AbstractAdipose tissue seems to be a rich and safe source of mesenchymal stem cells (MSCs). The present study was aimed to investigate the biological and morphological characteristics of human adipose tissue-derived stem cells (ATSCs). Light and transmission electron microscopy were used. Course of proliferation was analyzed by growth curve. Expression of surface antigens was assessed by flow cytometry. Chondrogenic potential was assessed by immunohistochemistry. Obtained results showed morphology typical of fibroblastoid cells. TEM analysis proved ultrastructural morphology similar to MSCs from other sources. ATSCs reflected their proteosynthetic and metabolic activity. Each cell had irregular shape of nucleus with noticeable nucleoli. Abundant cisterns of rough endoplasmic reticulum were present in their cytoplasm. Karyotype mapping showed normal count of human chromosomes (46,XX). The growth curve revealed high capability for proliferation and population doubling time was 27.36 hours. ATSCs were positive for CD13, CD29, CD44, CD73, CD90, CD105 and CD106, but did not express CD14, CD34, CD45 and HLA-DR. It was also proved that ATSCs underwent chondrogenic differentiation in vitro. On the basis of obtained results it should be emphasized that ATSCs are typical MSCs and after further investigations they may be used in tissue engineering and regenerative medicine.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammed Zayed ◽  
Steven Newby ◽  
Nabil Misk ◽  
Robert Donnell ◽  
Madhu Dhar

Horses are widely used as large animal preclinical models for cartilage repair studies, and hence, there is an interest in using equine synovial fluid-derived mesenchymal stem cells (SFMSCs) in research and clinical applications. Since, we have previously reported that similar to bone marrow-derived MSCs (BMMSCs), SFMSCs may also exhibit donor-to-donor variations in their stem cell properties; the current study was carried out as a proof-of-concept study, to compare the in vivo potential of equine BMMSCs and SFMSCs in articular cartilage repair. MSCs from these two sources were isolated from the same equine donor. In vitro analyses confirmed a significant increase in COMP expression in SFMSCs at day 14. The cells were then encapsulated in neutral agarose scaffold constructs and were implanted into two mm diameter full-thickness articular cartilage defect in trochlear grooves of the rat femur. MSCs were fluorescently labeled, and one week after treatment, the knee joints were evaluated for the presence of MSCs to the injured site and at 12 weeks were evaluated macroscopically, histologically, and then by immunofluorescence for healing of the defect. The macroscopic and histological evaluations showed better healing of the articular cartilage in the MSCs’ treated knee than in the control. Interestingly, SFMSC-treated knees showed a significantly higher Col II expression, suggesting the presence of hyaline cartilage in the healed defect. Data suggests that equine SFMSCs may be a viable option for treating osteochondral defects; however, their stem cell properties require prior testing before application.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Nidia K. Moncada-Saucedo ◽  
Iván A. Marino-Martínez ◽  
Jorge Lara-Arias ◽  
Víktor J. Romero-Díaz ◽  
Alberto Camacho ◽  
...  

Articular cartilage injuries remain as a therapeutic challenge due to the limited regeneration potential of this tissue. Cartilage engineering grafts combining chondrogenic cells, scaffold materials, and microenvironmental factors are emerging as promissory alternatives. The design of an adequate scaffold resembling the physicochemical features of natural cartilage and able to support chondrogenesis in the implants is a crucial topic to solve. This study reports the development of an implant constructed with IGF1-transduced adipose-derived mesenchymal stem cells (immunophenotypes: CD105+, CD90+, CD73+, CD14-, and CD34-) embedded in a scaffold composed of a mix of alginate/milled bovine decellularized knee material which was cultivated in vitro for 28 days (3CI). Histological analyses demonstrated the distribution into isogenous groups of chondrocytes surrounded by a de novo dense extracellular matrix with balanced proportions of collagens II and I and high amounts of sulfated proteoglycans which also evidenced adequate cell proliferation and differentiation. This graft also shoved mechanical properties resembling the natural knee cartilage. A modified Bern/O’Driscoll scale showed that the 3CI implants had a significantly higher score than the 2CI implants lacking cells transduced with IGF1 (16/18 vs. 14/18), representing high-quality engineering cartilage suitable for in vivo tests. This study suggests that this graft resembles several features of typical hyaline cartilage and will be promissory for preclinical studies for cartilage regeneration.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Monika Marędziak ◽  
Krzysztof Marycz ◽  
Krzysztof A. Tomaszewski ◽  
Katarzyna Kornicka ◽  
Brandon Michael Henry

Tissue regeneration using human adipose derived mesenchymal stem cells (hASCs) has significant potential as a novel treatment for many degenerative bone and joint diseases. Previous studies have established that age negatively affects the proliferation status and the osteogenic and chondrogenic differentiation potential of mesenchymal stem cells. The aim of this study was to assess the age-related maintenance of physiological function and differentiation potential of hASCs in vitro. hASCs were isolated from patients of four different age groups: (1) >20 years (n=7), (2) >50 years (n=7), (3) >60 years (n=7), and (4) >70 years (n=7). The hASCs were characterized according to the number of fibroblasts colony forming unit (CFU-F), proliferation rate, population doubling time (PDT), and quantified parameters of adipogenic, chondrogenic, and osteogenic differentiation. Compared to younger cells, aged hASCs had decreased proliferation rates, decreased chondrogenic and osteogenic potential, and increased senescent features. A shift in favor of adipogenic differentiation with increased age was also observed. As many bone and joint diseases increase in prevalence with age, it is important to consider the negative influence of age on hASCs viability, proliferation status, and multilineage differentiation potential when considering the potential therapeutic applications of hASCs.


Blood ◽  
2012 ◽  
Vol 120 (17) ◽  
pp. 3436-3443 ◽  
Author(s):  
Yan Li ◽  
Feng Lin

Abstract Despite the potent immunosuppressive activity that mesenchymal stem cells (MSCs) display in vitro, recent clinical trial results are disappointing, suggesting that MSC viability and/or function are greatly reduced after infusion. In this report, we demonstrated that human MSCs activated complement of the innate immunity after their contact with serum. Although all 3 known intrinsic cell-surface complement regulators were present on MSCs, activated complement overwhelmed the protection of these regulators and resulted in MSCs cytotoxicity and dysfunction. In addition, autologous MSCs suffered less cellular injury than allogeneic MSCs after contacting serum. All 3 complement activation pathways were involved in generating the membrane attack complex to directly injure MSCs. Supplementing an exogenous complement inhibitor, or up-regulating MSC expression levels of CD55, one of the cell-surface complement regulators, helped to reduce the serum-induced MSC cytotoxicity. Finally, adoptively transferred MSCs in complement deficient mice or complement-depleted mice showed reduced cellular injury in vivo compared with those in wild type mice. These results indicate that complement is integrally involved in recognizing and injuring MSCs after their infusion, suggesting that autologous MSCs may have ad-vantages over allogeneic MSCs, and that inhibiting complement activation could be a novel strategy to improve existing MSC-based therapies.


2007 ◽  
Vol 330-332 ◽  
pp. 1141-1144 ◽  
Author(s):  
Mika Tadokoro ◽  
Noriko Kotobuki ◽  
Akira Oshima ◽  
Hajime Ohgushi

This study focused on in vivo osteogenic capability of bone marrow mesenchymal stem cells (MSCs) seeded on ceramic scaffold. Human MSCs from a single donor were seeded on hydroxyapatite porous ceramic (HAP) and were induced to the osteogenic lineage during in vitro culture condition, then the MSCs/HAP composites were implanted subcutaneously into immunodeficient rats. The cellular activities of the composites were assayed in order to evaluate the distribution and differentiation capability of seeded MSCs before and after implantation. These results showed that the new bone, after implantation, was derived from the donor MSCs, which adhered to the surface of the ceramics pore areas during in vitro culture. Therefore, the engrafted donor cells proliferated and showed continuous osteogenic differentiation within the recipients. Consequently, our study demonstrates the usefulness of MSCs/HAP composites for clinical applications.


Author(s):  
Juan Gao ◽  
Shuaibing Hou ◽  
Shengnan Yuan ◽  
Yuxia Wang ◽  
Yanan Gao ◽  
...  

Myeloid cells have been identified as hematopoietic stem cell (HSC)-regulating cells. However, the mechanisms by which myeloid cells regulate the function of HSCs are not fully defined. Our previous study indicated that the HSCs are over-expanded in Vav1-Cre;Rheb1fl/fl mice. Here, using in vivo and in vitro models, we found that Rheb1-deficient neutrophils remodeled the bone marrow environment and induced expansion of HSCs in vivo. Further studies showed that loss of Rheb1 impaired neutrophils’ ability to secrete IL-6, led mesenchymal stem cells (MSCs) to produce more SCF, and promote HSC proliferation. We further found that IL-6 suppressed SCF mRNA expression in human MSCs. Interesting, the high level of IL-6 was also related with poor survival of chronic myeloid leukemia (CML) patients, and higher expression of IL-6 in CML cells is associated with the lower expression of SCF in MSCs in patients. Our studies suggested that blocking IL-6 signaling pathway might stimulate MSCs to secrete more SCF, and to support hematopoietic stem/progenitor cells proliferation.


2021 ◽  
Vol 24 (8) ◽  
pp. 607-614
Author(s):  
Maryam Samareh Salavati Pour ◽  
Fatemeh Hoseinpour Kasgari ◽  
Alireza Farsinejad ◽  
Ahmad Fatemi ◽  
Gholamhossein Hassanshahi ◽  
...  

Background: Due to their self-renewal and differentiation ability, the mesenchymal stem cells (MSCs) have been studied extensively. However, the MSCs lifespan is restricted; they undergo several divisions in vitro that cause several alternations in cellular features and relatively lessens their application. Thus, this study was aimed to assess the effect of platelet-derived microparticles (PMPs), a valuable source of proteins, microRNAs (miRNAs), and growth factors, on the expression of hTERT, c-MYC, p16, p53, and p21 as the most important aging and cell longevity genes alongside with population doubling time (PDT) of PMP-treated cells in comparison to a control group. Methods: Umbilical cord MSCs (UC-MSCs) were used in this study, whereby they reached a confluency of 30%. MSCs were treated by PMPs (50 µg/mL), and then, PDT was determined for both groups. Quantitative expression of hTERT, c-MYC, p16, p53, and p21 was examined through quantitative real-time PCR at various intervals (i.e. after five and thirty days as well as freezing-thawing process). Results: Our results demonstrated that the treated group had a shorter PDT in comparison to the control group (P<0.050). The real-Time PCR data also indicated that PMPs were able to remarkably up-regulate hTERT and c-MYC genes expression while down-regulating the expression of p16, p21, and p53 genes (P<0.050), especially following five days of treatment. Conclusion: According to these data, it appears that PMPs are a safe and effective candidate for prolonging the lifespan of UC-MSCs; however, further investigations are needed to corroborate this finding.


Sign in / Sign up

Export Citation Format

Share Document