scholarly journals Monocytopenia in clozapine-induced agranulocytosis: insights into pathophysiology and treatment

2019 ◽  
Vol 12 (1) ◽  
pp. bcr-2018-226016 ◽  
Author(s):  
Rajvi Patel ◽  
Ateaya Lima ◽  
Christopher Burke ◽  
Mark Hoffman

A 26-year-old man with history of schizophrenia was admitted for neutropaenia. He was started on clozapine 3 months prior to admission. As a result he had weekly monitoring of his blood counts and on day of admission was noted to have an absolute neutrophil count (ANC) of 450 cells/μL. He was admitted for clozapine-induced agranulocytosis. Clozapine was held and the patient was started on granulocyte colony-stimulating factor (G-CSF) filgrastim and received two doses without any signs of ANC recovery. On further review, it was noted that the absolute monocyte count (AMC) was also low and tracked with the trend of ANC. We then theorised that the impact of clozapine was on a haematopoietic precursor (colony-forming unit granulocyte-macrophage, CFU-GM) which gives rise to both monocytic and myeloid lineages. Therefore, sargramostim GM-CSF was started. After two doses, the ANC and AMC started trending up and by the third dose, both counts had fully recovered. He was discharged from the hospital and there are no plans to rechallenge with clozapine. Thus, we demonstrate a case of monocytopenia accompanying clozapine-induced agranulocytosis with successful use of GM-CSF. At least in this case, the target of the clozapine injury appears to be the CFU-GM, explaining the rapid and full response to GM-CSF after lack of response to G-CSF.

Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 1954-1962 ◽  
Author(s):  
TR Ulich ◽  
J del Castillo ◽  
IK McNiece ◽  
ES Yi ◽  
CP Alzona ◽  
...  

Abstract Recombinant rat stem cell factor (rrSCF) and recombinant human granulocyte colony-stimulating factor (G-CSF) coinjected for 1 week in rats cause a synergistic increase in mature marrow neutrophils accompanied by a striking decrease in erythroid and lymphoid marrow elements. The spleens of the same rats show increased granulopoiesis as well as increased erythropoiesis as compared with the spleens of rats treated with either growth factor alone. Splenic extramedullary erythropoiesis may act to compensate for the decrease in marrow erythropoiesis. The coinjection of rrSCF and G-CSF causes an increase in marrow mast cells at the end of 1 week, but the increase is much less than in rrSCF-alone-treated rats. The combination of rrSCF and G- CSF increases the rate of release of marrow neutrophils into the circulation and causes a dramatic synergistic peripheral neutrophilia, beginning especially after 4 days of treatment. Colony-forming assays of all experimental groups showed a synergistic increase in colony- forming unit granulocyte-macrophage (CFU-GM) in the marrow, but not in peripheral blood, after coincubation with SCF plus granulocyte- macrophage CSF (GM-CSF) as opposed to GM-CSF alone, showing anatomic compartmentalization between a more primitive marrow CFU-GM subset and a more mature peripheral blood CFU-GM subset. In vivo daily administration of SCF plus GM-CSF results in a synergistic increase in marrow neutrophils, but not the striking synergistic increase in circulating neutrophils that is observed with SCF plus G-CSF.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3781-3788 ◽  
Author(s):  
Kenneth Brasel ◽  
Hilary J. McKenna ◽  
Keith Charrier ◽  
Phillip J. Morrissey ◽  
Douglas E. Williams ◽  
...  

Abstract Peripheral blood progenitor cells (PBPC) are increasingly being used in the clinic as a replacement for bone marrow (BM) in the transplantation setting. We investigated the capacity of several different growth factors, including human flt3 ligand (FL), alone and in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF ) or granulocyte colony-stimulating factor (G-CSF ), to mobilize colony forming cells (CFU) into the peripheral blood (PB) of mice. Mice were injected subcutaneously (SC) with growth factors daily for up to 10 days. Comparing the single agents, we found that FL alone was superior to GM-CSF or G-CSF in mobilizing CFU into the PB. FL synergized with both GM-CSF or G-CSF to mobilize more CFU, and in a shorter period of time, than did any single agent. Administration of FL plus G-CSF for 6 days resulted in a 1,423-fold and 2,717-fold increase of colony-forming unit–granulocyte-macrophage (CFU-GM) and colony-forming unit granulocyte, erythroid, monocyte, megakaryocyte (CFU-GEMM) in PB, respectively, when compared with control mice. We also followed the kinetics of CFU numerical changes in the BM of mice treated with growth factors. While GM-CSF and G-CSF alone had little effect on BM CFU over time, FL alone increased CFU-GM and CFU-GEMM threefold and fivefold, respectively. Addition of GM-CSF or G-CSF to FL did not increase CFU in BM over levels seen with FL alone. However, after the initial increase in BM CFU after FL plus G-CSF treatment for 3 days, BM CFU returned to control levels after 5 days treatment, and CFU-GM were significantly reduced (65%) after 7 days treatment, when compared with control mice. Finally, we found that transplantation of FL or FL plus G-CSF–mobilized PB cells protected lethally irradiated mice and resulted in long-term multilineage hematopoietic reconstitution.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 1954-1962 ◽  
Author(s):  
TR Ulich ◽  
J del Castillo ◽  
IK McNiece ◽  
ES Yi ◽  
CP Alzona ◽  
...  

Recombinant rat stem cell factor (rrSCF) and recombinant human granulocyte colony-stimulating factor (G-CSF) coinjected for 1 week in rats cause a synergistic increase in mature marrow neutrophils accompanied by a striking decrease in erythroid and lymphoid marrow elements. The spleens of the same rats show increased granulopoiesis as well as increased erythropoiesis as compared with the spleens of rats treated with either growth factor alone. Splenic extramedullary erythropoiesis may act to compensate for the decrease in marrow erythropoiesis. The coinjection of rrSCF and G-CSF causes an increase in marrow mast cells at the end of 1 week, but the increase is much less than in rrSCF-alone-treated rats. The combination of rrSCF and G- CSF increases the rate of release of marrow neutrophils into the circulation and causes a dramatic synergistic peripheral neutrophilia, beginning especially after 4 days of treatment. Colony-forming assays of all experimental groups showed a synergistic increase in colony- forming unit granulocyte-macrophage (CFU-GM) in the marrow, but not in peripheral blood, after coincubation with SCF plus granulocyte- macrophage CSF (GM-CSF) as opposed to GM-CSF alone, showing anatomic compartmentalization between a more primitive marrow CFU-GM subset and a more mature peripheral blood CFU-GM subset. In vivo daily administration of SCF plus GM-CSF results in a synergistic increase in marrow neutrophils, but not the striking synergistic increase in circulating neutrophils that is observed with SCF plus G-CSF.


2015 ◽  
Vol 88 (4) ◽  
pp. 468-472 ◽  
Author(s):  
Sînziana Cetean ◽  
Călin Căinap ◽  
Anne-Marie Constantin ◽  
Simona Căinap ◽  
Alexandra Gherman ◽  
...  

Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein, the second CSF, sharing some common effects with granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin-3 (IL-3) and interleukin-5 (IL-5). G-CSF is mainly produced by fibroblasts and endothelial cells from bone marrow stroma and by immunocompetent cells (monocytes, macrophages). The receptor for G-CSF (G-CSFR) is part of the cytokine and hematopoietin receptor superfamily and G-CSFR mutations cause severe congenital neutropenia.The main action of G-CSF - G-CSFR linkage is stimulation of the production, mobilization, survival and chemotaxis of neutrophils, but there are many other G-CSF effects: growth and migration of endothelial cells, decrease of norepinephrine reuptake, increase in osteoclastic activity and decrease in osteoblast activity.In oncology, G-CSF is utilized especially for the primary prophylaxis of chemotherapy-induced neutropenia, but it can be used for hematopoietic stem cell transplantation, it can produce monocytic differentiation of some myeloid leukemias and it can increase some drug resistance.The therapeutic indications of G-CSF are becoming more and more numerous: non neutropenic patients infections, reproductive medicine, neurological disturbances, regeneration therapy after acute myocardial infarction and of skeletal muscle, and hepatitis C therapy.


Blood ◽  
1990 ◽  
Vol 75 (10) ◽  
pp. 1951-1959 ◽  
Author(s):  
AR Migliaccio ◽  
G Migliaccio ◽  
DC Dale ◽  
WP Hammond

Abstract The number and growth factor requirements of committed progenitor cells (colony-forming units-granulocyte/macrophage and burst-forming units- erythroid) in three patients with cyclic neutropenia (two congenital, one acquired) were studied before and during therapy with recombinant human granulocyte colony-stimulating factor (G-CSF; 3 to 10 micrograms/kg/d). When the patients with congenital disease were treated with G-CSF, the cycling of blood cells persisted, but the cycle length was shortened from 21 days to 14 days, and the amplitude of variations in blood counts increased. There was a parallel shortening of the cycle and increase of the amplitude of variations (from two- to three-fold to 10- to 100-fold) in the number of both types of circulating progenitor cells in these two patients. In the patient with acquired cyclic neutropenia, cycling of both blood cells and progenitors could not be seen. In cultures deprived of fetal bovine serum, erythroid and myeloid bone marrow progenitor cells from untreated patients and from normals differed in growth factor responsiveness. As examples, maximal growth of granulocyte/macrophage (GM) colonies was induced by granulocyte/macrophage (GM)-CSF plus G-CSF in the patients, whereas a combination of GM-CSF, G-CSF and interleukin- 3 (IL-3) was required in the normals, and erythropoietin alone induced fourfold more erythroid bursts from cyclic neutropenic patients than from normal donors (46% versus 11% of the maximal colony number, respectively). The growth factor responsiveness of marrow progenitor cells slightly changed during the treatment toward the values observed with normal progenitors. These results indicate that treatment with G- CSF not only ameliorated the neutropenia, but also increased the amplitude and the frequency of oscillation of circulating progenitor cell numbers. These data are consistent with the hypothesis that G-CSF therapy affects the proliferation of the hematopoietic stem cell.


1997 ◽  
Vol 15 (4) ◽  
pp. 1418-1426 ◽  
Author(s):  
S Frustaci ◽  
A Buonadonna ◽  
E Galligioni ◽  
D Favaro ◽  
A De Paoli ◽  
...  

PURPOSE To determine the maximum-tolerated dose (MTD) of 4'-epidoxorubicin (EPI) in combination with full dose of ifosfamide (IFO) when granulocyte-macrophage colony-stimulating factor (GM-CSF) was used, to estimate its clinical efficacy, and to evaluate the mobilization of hematopoietic progenitors. PATIENTS AND METHODS Previously untreated advanced patients were treated with fixed doses of IFO at 1.8 g/m2/d for 5 days and escalating doses of EPI. The starting dose level of EPI was 50 mg/m2 bolus on days 1 and 2; subsequent levels were 60 mg/m2 and 70 mg/ m2 given on days 1 and 2. GM-CSF (5 micrograms/kg/d) was administered from days +6 to +19. Clinical evaluation of response was performed after three consecutive cycles. Mobilization of hematopoietic progenitors was evaluated as day 14 CFU-GM after the first cycle only. RESULTS Overall, six, 18, and 13 assessable patients were entered onto each EPI dose level, respectively. The first and the second EPI level were considered feasible. Conversely, at the third level, only six of 13 patients [46%] tolerated full EPI doses at the scheduled time. Therefore, the dose-intensity of the three levels was 100%, 99.7%, and 86.1%, respectively. Overall, 20 of 37 patients (54%) obtained an objective response. The response rates for the three EPI dose levels were significantly different [17%, 33%, and 100%, respectively; test for trend, P < .001]. Considering only lung metastases, the overall response rate was 72% (20%, 66%, and 100% for the three EPI levels, respectively). The most relevant mobilization effect was obtained at the third EPI level, when both GM-CSF and IL-3 were used as in vitro-stimulating factors. CONCLUSION The third EPI level (70 mg/m2 on days 1 and 2) is the MTD of this program, since it was administered, without dose reduction or treatment delay, for three consecutive cycles in less than half of the patients. Nevertheless, this level proved to be interesting with regard to response rate (13 of 13 objective responses) and in mobilization of the hematopoietic progenitors.


Sign in / Sign up

Export Citation Format

Share Document