scholarly journals Association between plasma concentrations of plasminogen activator inhibitor-1 and survival in patients with colorectal cancer

BMJ ◽  
1998 ◽  
Vol 316 (7134) ◽  
pp. 829-830 ◽  
Author(s):  
H. J. Nielsen ◽  
H. Pappot ◽  
I. J. Christensen ◽  
N. Brunner ◽  
O. Thorlacius-Ussing ◽  
...  
2005 ◽  
Vol 181 (2) ◽  
pp. 275-284 ◽  
Author(s):  
Maartje Verschuur ◽  
Annemarie Jellema ◽  
Else M. Bladbjerg ◽  
Edith J. M. Feskens ◽  
Ronald P. Mensink ◽  
...  

1998 ◽  
Vol 80 (12) ◽  
pp. 942-948 ◽  
Author(s):  
M. Kockx ◽  
H. M. G. Princen ◽  
T. Kooistra

SummaryFibrates are used to lower plasma triglycerides and cholesterol levels in hyperlipidemic patients. In addition, fibrates have been found to alter the plasma concentrations of fibrinogen, plasminogen activator inhibitor-1 (PAI-1) and apolipoprotein A-I (apo A-I). We have investigated the in vitro effects of fibrates on fibrinogen, PAI-1 and apo A-I synthesis and the underlying regulatory mechanisms in primary monkey hepatocytes.We show that fibrates time- and dose-dependently increase fibrinogen and apo A-I expression and decrease PAI-1 expression in cultured cynomolgus monkey hepatocytes, the effects demonstrating different potency for different fibrates. After three consecutive periods of 24 h the most effective fibrate, ciprofibrate (at 1 mmol/l), increased fibrinogen and apo A-I synthesis to 356% and 322% of control levels, respectively. Maximum inhibition of PAI-1 synthesis was about 50% of control levels and was reached by 1 mmol/l gemfibrozil or ciprofibrate after 48 h. A ligand for the retinoid-X-receptor (RXR), 9-cis retinoic acid, and specific activators of the peroxisome proliferator-activated receptor-α (PPARα), Wy14,643 and ETYA, influenced fibrinogen, PAI-1 and apo A-I expression in a similar fashion, suggesting a role for the PPARα/RXRα heterodimer in the regulation of these genes. When comparing the effects of the various compounds on PPARα trans-activation activity as determined in a PPARα-sensitive reporter gene system and the ability of the compounds to affect fibrinogen, PAI-1 and apo A-I antigen production, a good correlation (r = 0.80; p <0.01) between PPARα transactivation and fibrinogen expression was found. Apo A-I expression correlated only weakly with PPARα transactivation activity (r = 0.47; p = 0.24), whereas such a correlation was absent for PAI-1 (r = 0.03; p = 0.95). These results strongly suggest an involvement of PPARα in the regulation of fibrinogen gene expression.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 153-160
Author(s):  
Tomihisa Kawasaki ◽  
Mieke Dewerchin ◽  
Henri R. Lijnen ◽  
Jos Vermylen ◽  
Marc F. Hoylaerts

The role of plasminogen activator inhibitor-1 (PAI-1) in the plasma, blood platelets, and vessel wall during acute arterial thrombus formation was investigated in gene-deficient mice. Photochemically induced thrombosis in the carotid artery was analyzed via transillumination. In comparison to thrombosis in C57BL/6J wild-type (wt) mice (113 ± 19 × 106 arbitrary light units [AU] n = 15, mean ± SEM), thrombosis in PAI-1−/− mice (40 ± 10 × 106 AU, n = 13) was inhibited (P < .01), indicating that PAI-1 controls fibrinolysis during thrombus formation. Systemic administration of murine PAI-1 into PAI-1−/− mice led to a full recovery of thrombotic response. Occurrence of fibrinolytic activity was confirmed in 2-antiplasmin (2-AP)–deficient mice. The sizes of thrombi developing in wt mice, in 2-AP+/− and 2-AP−/− mice were 102 ± 35, 65 ± 8.1, and 13 ± 6.1 × 106 AU, respectively (n = 6 each) (P < .05), compatible with functional plasmin inhibition by 2-AP. In contrast, thrombi in wt mice, t-PA−/− and u-PA−/−mice were comparable, substantiating efficient inhibition of fibrinolysis by the combined PAI-1/2-AP action. Platelet depletion and reconstitution confirmed a normal thrombotic response in wt mice, reconstituted with PAI-1−/− platelets, but weak thrombosis in PAI-1−/− mice reconstituted with wt platelets. Accordingly, murine (wt) PAI-1 levels in platelet lysates and releasates were 0.43 ± 0.09 ng/109 platelets and plasma concentrations equaled 0.73 ± 0.13 ng/mL. After photochemical injury, plasma PAI-1 rose to 2.9 ± 0.7 ng/mL (n = 9, P < .01). The plasma rise was prevented by ligating the carotid artery. Hence, during acute thrombosis, fibrinolysis is efficiently prevented by plasma 2-AP, but also by vascular PAI-1, locally released into the circulation after endothelial injury.


1990 ◽  
Vol 79 (5) ◽  
pp. 513-516 ◽  
Author(s):  
P. J. Grant ◽  
E. K. O. Kruithof ◽  
C. P. Felley ◽  
J. P. Felber ◽  
F. Bachmann

1. To investigate the acute effects of insulin and triacylglycerol (‘triglyceride’) on circulating plasminogen activator inhibitor-1 concentrations, seven healthy volunteers were studied during hyperinsulinaemic clamps in the presence of euglycaemia (mean glucose concentration 5 mmol/l) and hyperglycaemia (mean glucose concentration 9 mmol/l) with and without triacylglycerol infusions. 2. During euglycaemia, plasma insulin levels rose from baseline values [median (range)] of 13 (6.6–20.6) m-units/l to 89 (74–105) m-units/l and 99 (74–109) m-units/l after 1 and 2 h of insulin infusion, respectively. Concentrations of plasminogen activator inhibitor-1 fell from 27.5 (10–47) ng/ml to 25.0 (14.5–55) ng/ml and 15.5 (11.5–28.5) ng/ml (P < 0.02) over the same time. 3. During hyperglycaemia, plasma insulin concentrations were 12.1 (9.3–17.1) m-units/l at the run-in period and rose to 87 (73–112) m-units/l and 91 (84–97) m-units/l after 1 and 2 h of insulin infusion, respectively. Concentrations of plasminogen activator inhibitor-1 again showed a gradual fall from 24.7 (22–50) ng/ml to 14 (8.3–25.5) ng/ml and 13 (6.0–35.0) ng/ml (P < 0.02) over the same period. 4. Infusion of Intralipid in the presence of hyperinsulinaemia with either euglycaemia or hyperglycaemia was associated with a similar fall in concentrations of plasminogen activator inhibitor-1 over the study period. 5. The results from this study indicate that short-term increases in insulin, glucose or triacylglycerol do not cause acute increases in plasma concentrations of plasminogen activator inhibitor-1.


2020 ◽  
Vol 21 (12) ◽  
pp. 4334 ◽  
Author(s):  
Jisu Oh ◽  
Hui Jeong An ◽  
Jung Oh Kim ◽  
Hak Hoon Jun ◽  
Woo Ram Kim ◽  
...  

The plasminogen activator inhibitor-1 (PAI-1) is expressed in many cancer cell types and modulates cancer growth, invasion, and angiogenesis. The present study investigated the association between five PAI-1 gene polymorphisms and colorectal cancer (CRC) risk. Five PAI-1 polymorphisms (−844G > A [rs2227631], −675 4G > 5G [rs1799889], +43G > A [rs6092], +9785G > A [rs2227694], and +11053T > G [rs7242]) were genotyped using a polymerase chain reaction-restriction fragment length polymorphism assay in 459 CRC cases and 416 controls. Increased CRC risk was more frequently associated with PAI-1 −675 5G5G polymorphism than with 4G4G (adjusted odds ratio (AOR) = 1.556; 95% confidence interval (CI): 1.012–2.391; p = 0.04). In contrast, for the PAI-1 +11053 polymorphism, we found a lower risk of CRC with the GG genotype (AOR = 0.620; 95% CI: 0.413–0.932; p = 0.02) than with the TT genotype, as well as for recessive carriers (TT + TG vs. GG, AOR = 0.662; 95% CI: 0.469–0.933; p = 0.02). The +43AA genotype was associated with lower overall survival (OS) than the +43GG genotype. Our results suggest that the PAI-1 genotype plays a role in CRC risk. This is the first study to identify an association between five PAI-1 polymorphisms and CRC incidence worldwide.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Songul Yasar Yildiz ◽  
Pinar Kuru ◽  
Ebru Toksoy Oner ◽  
Mehmet Agirbasli

Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role in acute thrombotic events such as deep vein thrombosis (DVT) and myocardial infarction (MI). The biological effects of PAI-1 extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2 diabetes, and cancer. The conversion of PAI-1 from the active to the latent conformation appears to be unique among serpins in that it occurs spontaneously at a relatively rapid rate. Latency transition is believed to represent a regulatory mechanism, reducing the risk of thrombosis from a prolonged antifibrinolytic action of PAI-1. Thus, relying solely on plasma concentrations of PAI-1 without assessing its function may be misleading in interpreting the role of PAI-1 in many complex diseases. Environmental conditions, interaction with other proteins, mutations, and glycosylation are the main factors that have a significant impact on the stability of the PAI-1 structure. This review provides an overview on the current knowledge on PAI-1 especially importance of PAI-1 level and stability and highlights the potential use of PAI-1 inhibitors for treating cardiovascular disease.


Sign in / Sign up

Export Citation Format

Share Document