scholarly journals Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet

2019 ◽  
Vol 7 (1) ◽  
pp. e000783 ◽  
Author(s):  
Liang Xu ◽  
Naoto Nagata ◽  
Guanliang Chen ◽  
Mayumi Nagashimada ◽  
Fen Zhuge ◽  
...  

ObjectiveWe reported previously that empagliflozin—a sodium-glucose cotransporter (SGLT) 2 inhibitor—exhibited preventive effects against obesity. However, it was difficult to extrapolate these results to human subjects. Here, we performed a therapeutic study, which is more relevant to clinical situations in humans, to investigate antiobesity effects of empagliflozin and illustrate the mechanism underlying empagliflozin-mediated enhanced fat browning in obese mice.Research design and methodsAfter 8 weeks on a high-fat diet (HFD), C57BL/6J mice exhibited obesity, accompanied by insulin resistance and low-grade chronic inflammation. Cohorts of obese mice were continued on the HFD for an additional 8-week treatment period with or without empagliflozin.ResultsTreatment with empagliflozin for 8 weeks markedly increased glucose excretion in urine, and suppressed HFD-induced weight gain, insulin resistance and hepatic steatosis. Notably, empagliflozin enhanced oxygen consumption and carbon dioxide production, leading to increased energy expenditure. Consistently, the level of uncoupling protein 1 expression was increased in both brown and white (WAT) adipose tissues of empagliflozin-treated mice. Furthermore, empagliflozin decreased plasma levels of interleukin (IL)-6 and monocyte chemoattractant protein-1, but increased plasma levels of IL-33 and adiponectin in obese mice. Finally, we found that empagliflozin reduced M1-polarized macrophage accumulation, while inducing the anti-inflammatory M2 phenotype of macrophages in the WAT and liver, thereby attenuating obesity-related chronic inflammation.ConclusionsTreatment with empagliflozin attenuated weight gain by increasing energy expenditure and adipose tissue browning, and alleviated obesity-associated inflammation and insulin resistance by alternative macrophage activation in the WAT and liver of obese mice.

2019 ◽  
Vol 20 (12) ◽  
pp. 2858 ◽  
Author(s):  
Mia Kim ◽  
Mi Hyeon Seol ◽  
Byung-Cheol Lee

Obesity is a chronic low-grade inflammatory condition in which hypertrophied adipocytes and adipose tissue immune cells, mainly macrophages, contribute to increased circulating levels of proinflammatory cytokines. Obesity-associated chronic low-grade systemic inflammation is considered a focal point and a therapeutic target in insulin resistance and metabolic diseases. We evaluate the effect of Poncirus fructus (PF) on insulin resistance and its mechanism based on inflammatory responses in high-fat diet (HFD)-induced obese mice. Mice were fed an HFD to induce obesity and then administered PF. Body weight, epididymal fat and liver weight, glucose, lipid, insulin, and histologic characteristics were evaluated to determine the effect of PF on insulin resistance by analyzing the proportion of macrophages in epididymal fat and liver and measured inflammatory gene expression. PF administration significantly decreased the fasting and postprandial glucose, fasting insulin, HOMA-IR, total-cholesterol, triglycerides, and low-density lipoprotein cholesterol levels. The epididymal fat tissue and liver showed a significant decrease of fat accumulation in histological analysis. PF significantly reduced the number of adipose tissue macrophages (ATMs), F4/80+ Kupffer cells, and CD68+ Kupffer cells, increased the proportion of M2 phenotype macrophages, and decreased the gene expression of inflammatory cytokines. These results suggest that PF could be used to improve insulin resistance through modulation of macrophage-mediated inflammation and enhance glucose and lipid metabolism.


2020 ◽  
Vol 21 (12) ◽  
pp. 4256
Author(s):  
Dongju Lee ◽  
Yujin Shin ◽  
Jong Seong Roh ◽  
Jiwon Ahn ◽  
Sunhyo Jeoong ◽  
...  

Our previous studies demonstrated that peroxisome proliferator-activated receptor α (PPARα) activation reduces weight gain and improves insulin sensitivity in obese mice. Since excess lipid accumulation in non-adipose tissues is suggested to be responsible for the development of insulin resistance, this study was undertaken to examine whether the lemon balm extract ALS-L1023 regulates hepatic lipid accumulation, obesity, and insulin resistance and to determine whether its mechanism of action involves PPARα. Administration of ALS-L1023 to high-fat-diet-induced obese mice caused reductions in body weight gain, visceral fat mass, and visceral adipocyte size without changes of food consumption profiles. ALS-L1023 improved hyperglycemia, hyperinsulinemia, glucose and insulin tolerance, and normalized insulin-positive β-cell area in obese mice. ALS-L1023 decreased hepatic lipid accumulation and concomitantly increased the expression of PPARα target genes responsible for fatty acid β-oxidation in livers. In accordance with the in vivo data, ALS-L1023 reduced lipid accumulation and stimulated PPARα reporter gene expression in HepG2 cells. These effects of ALS-L1023 were comparable to those of the PPARα ligand fenofibrate, while the PPARα antagonist GW6471 inhibited the actions of ALS-L1023 on lipid accumulation and PPARα luciferase activity in HepG2 cells. Higher phosphorylated protein kinase B (pAkt)/Akt ratios and lower expression of gluconeogenesis genes were observed in the livers of ALS-L1023-treated mice. These results indicate that ALS-L1023 may inhibit obesity and improve insulin sensitivity in part through inhibition of hepatic lipid accumulation via hepatic PPARα activation.


2021 ◽  
Author(s):  
Haizhao Song ◽  
Xinchun Shen ◽  
Yang Zhou ◽  
Xiaodong Zheng

Supplementation of black rice anthocyanins (BRAN) alleviated high fat diet-induced obesity, insulin resistance and hepatic steatosis by improvement of lipid metabolism and modification of the gut microbiota.


2018 ◽  
Vol 19 (10) ◽  
pp. 3281 ◽  
Author(s):  
Youngmi Lee ◽  
Eun-Young Kwon ◽  
Myung-Sook Choi

Isoliquiritigenin (ILG) is a flavonoid constituent of Glycyrrhizae plants. The current study investigated the effects of ILG on diet-induced obesity and metabolic diseases. C57BL/6J mice were fed a normal diet (AIN-76 purified diet), high-fat diet (40 kcal% fat), and high-fat diet +0.02% (w/w) ILG for 16 weeks. Supplementation of ILG resulted in decreased body fat mass and plasma cholesterol level. ILG ameliorated hepatic steatosis by suppressing the expression of hepatic lipogenesis genes and hepatic triglyceride and fatty acid contents, while enhancing β-oxidation in the liver. ILG improved insulin resistance by lowering plasma glucose and insulin levels. This was also demonstrated by the intraperitoneal glucose tolerance test (IPGTT). Additionally, ILG upregulated the expression of insulin signaling-related genes in the liver and muscle. Interestingly, ILG elevated energy expenditure by increasing the expression of thermogenesis genes, which is linked to stimulated mitochondrial biogenesis and uncoupled cellular respiration in brown adipose tissue. ILG also suppressed proinflammatory cytokine levels in the plasma. These results suggest that ILG supplemented at 0.02% in the diet can ameliorate body fat mass, plasma cholesterol, non-alcoholic fatty liver disease, and insulin resistance; these effects were partly mediated by increasing energy expenditure in high-fat fed mice.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hak Joo Choi ◽  
Hwa Young Kim ◽  
Kyoung Sik Park

A variety of natural products have been explored for their antiobesity potential and widely used to develop dietary supplements for the prevention of weight gain from excess body fat. In an attempt to find a natural antiobesity agent, this study was designed to evaluate the antiobesity activity of a novel herbal formulation LI85008F composed of extracts from three medicinal plants in high-fat diet- (HFD-) induced obese mice. After the thirteen-week oral administration of the test materials to mice, the body weight gain, whole-body fat mass, adipose tissue weight, and the expression levels of obesity-related proteins were measured. Our results indicated that LI85008F can suppress body weight gain and lower whole-body fat mass in HFD-induced obese mice. Significant decreases in epididymal and retroperitoneal fat mass were observed in LI85008F-treated groups compared with the HFD-fed control group ( p < 0.05 ). Furthermore, the oral administration of LI85008F caused significant decreases in the expression level of adipogenic (C/EBPα and PPARγ) and lipogenic (ACC) markers and notable increases in the production level of thermogenetic (AMPKα, PGC1α and UCP1) and lipolytic (HSL) proteins. These findings suggest that LI85008F holds great promise for a novel herbal formulation with antiobesity activities, preventing body fat accumulation and altering lipid metabolism.


Sign in / Sign up

Export Citation Format

Share Document