scholarly journals TOP2Agene copy number change in breast cancer

2014 ◽  
Vol 67 (5) ◽  
pp. 420-425 ◽  
Author(s):  
M J Engstrøm ◽  
B Ytterhus ◽  
L J Vatten ◽  
S Opdahl ◽  
A M Bofin
2020 ◽  
Vol 20 (9) ◽  
pp. 681-688
Author(s):  
Nikolai V. Litviakov ◽  
Marina K. Ibragimova ◽  
Matvey M. Tsyganov ◽  
Artem V. Doroshenko ◽  
Eugeniy Y. Garbukov ◽  
...  

Background: In this study, we examined the CNA-genetic landscape (CNA – copy number aberration) of breast cancer prior to and following neoadjuvant chemotherapy (NAC) and correlated changes in the tumor landscape with chemotherapy efficiency as well as metastasis-free survival. Objective: Breast cancer patients (n = 30) with luminal B molecular subtypes were treated with anthracycline- based therapy. Methods: To study CNAs in breast tumors, microarray analysis was performed. Results: Three effects of NAC on tumor CNA landscape were identified: 1 – the number of CNA-bearing tumor clones decreased following NAC; 2 – there were no alterations in the number of CNA-containing clones after NAC; 3 – the treatment with NAC increased the number of CNA-bearing clones (new clones appeared). All NAC-treated patients who had new tumor clones with amplification (20%) had a 100% likelihood of metastasis formation. In these cases, NAC contributed to the emergence of potential metastatic clones. Our study identified the following loci – 5p, 6p, 7q, 8q, 9p, 10p, 10q22.1, 13q, 16p, 18Chr and 19p – that were amplified during the treatment with NAC and may be the markers of potential metastatic clones. In other patients who showed total or partial elimination of CNA-bearing cell clones, no new amplification clones were observed after NAC, and no evidence of metastases was found with follow-up for 5 years (р = 0.00000). Conclusion: Our data suggest that the main therapeutic result from NAC is the elimination of potential metastatic clones present in the tumor before treatment. The results showed the necessity of an intelligent approach to NAC to avoid metastasis stimulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raimonda Kubiliute ◽  
Indre Januskeviciene ◽  
Ruta Urbanaviciute ◽  
Kristina Daniunaite ◽  
Monika Drobniene ◽  
...  

AbstractHyperactivation of ABC transporter ABCB1 and induction of epithelial–mesenchymal transition (EMT) are the most common mechanism of acquired cancer chemoresistance. This study describes possible mechanisms, that might contribute to upregulation of ABCB1 and synergistically boost the acquisition of doxorubicin (DOX) resistance in breast cancer MX-1 cell line. DOX resistance in MX-1 cell line was induced by a stepwise increase of drug concentration or by pretreatment of cells with an ABCB1 transporter activator tetraphenylphosphonium (TPP+) followed by DOX exposure. Transcriptome analysis of derived cells was performed by human gene expression microarrays and by quantitative PCR. Genetic and epigenetic mechanisms of ABCB1 regulation were evaluated by pyrosequencing and gene copy number variation analysis. Gradual activation of canonical EMT transcription factors with later activation of ABCB1 at the transcript level was observed in DOX-only treated cells, while TPP+ exposure induced considerable activation of ABCB1 at both, mRNA and protein level. The changes in ABCB1 mRNA and protein level were related to the promoter DNA hypomethylation and the increase in gene copy number. ABCB1-active cells were highly resistant to DOX and showed morphological and molecular features of EMT. The study suggests that nongenotoxic ABCB1 inducer can possibly accelerate development of DOX resistance.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 225
Author(s):  
Claudia Cava ◽  
Soudabeh Sabetian ◽  
Isabella Castiglioni

The development of new computational approaches that are able to design the correct personalized drugs is the crucial therapeutic issue in cancer research. However, tumor heterogeneity is the main obstacle to developing patient-specific single drugs or combinations of drugs that already exist in clinics. In this study, we developed a computational approach that integrates copy number alteration, gene expression, and a protein interaction network of 73 basal breast cancer samples. 2509 prognostic genes harboring a copy number alteration were identified using survival analysis, and a protein–protein interaction network considering the direct interactions was created. Each patient was described by a specific combination of seven altered hub proteins that fully characterize the 73 basal breast cancer patients. We suggested the optimal combination therapy for each patient considering drug–protein interactions. Our approach is able to confirm well-known cancer related genes and suggest novel potential drug target genes. In conclusion, we presented a new computational approach in breast cancer to deal with the intra-tumor heterogeneity towards personalized cancer therapy.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3366
Author(s):  
Anna-Sophie Liegmann ◽  
Kerstin Heselmeyer-Haddad ◽  
Annette Lischka ◽  
Daniela Hirsch ◽  
Wei-Dong Chen ◽  
...  

Purpose: Older breast cancer patients are underrepresented in cancer research even though the majority (81.4%) of women dying of breast cancer are 55 years and older. Here we study a common phenomenon observed in breast cancer which is a large inter- and intratumor heterogeneity; this poses a tremendous clinical challenge, for example with respect to treatment stratification. To further elucidate genomic instability and tumor heterogeneity in older patients, we analyzed the genetic aberration profiles of 39 breast cancer patients aged 50 years and older (median 67 years) with either short (median 2.4 years) or long survival (median 19 years). The analysis was based on copy number enumeration of eight breast cancer-associated genes using multiplex interphase fluorescence in situ hybridization (miFISH) of single cells, and by targeted next-generation sequencing of 563 cancer-related genes. Results: We detected enormous inter- and intratumor heterogeneity, yet maintenance of common cancer gene mutations and breast cancer specific chromosomal gains and losses. The gain of COX2 was most common (72%), followed by MYC (69%); losses were most prevalent for CDH1 (74%) and TP53 (69%). The degree of intratumor heterogeneity did not correlate with disease outcome. Comparing the miFISH results of diploid with aneuploid tumor samples significant differences were found: aneuploid tumors showed significantly higher average signal numbers, copy number alterations (CNAs) and instability indices. Mutations in PIKC3A were mostly restricted to luminal A tumors. Furthermore, a significant co-occurrence of CNAs of DBC2/MYC, HER2/DBC2 and HER2/TP53 and mutual exclusivity of CNAs of HER2 and PIK3CA mutations and CNAs of CCND1 and PIK3CA mutations were revealed. Conclusion: Our results provide a comprehensive picture of genome instability profiles with a large variety of inter- and intratumor heterogeneity in breast cancer patients aged 50 years and older. In most cases, the distribution of chromosomal aneuploidies was consistent with previous results; however, striking exceptions, such as tumors driven by exclusive loss of chromosomes, were identified.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fang Wang ◽  
Qihan Wang ◽  
Vakul Mohanty ◽  
Shaoheng Liang ◽  
Jinzhuang Dou ◽  
...  

AbstractWe present a Minimal Event Distance Aneuploidy Lineage Tree (MEDALT) algorithm that infers the evolution history of a cell population based on single-cell copy number (SCCN) profiles, and a statistical routine named lineage speciation analysis (LSA), whichty facilitates discovery of fitness-associated alterations and genes from SCCN lineage trees. MEDALT appears more accurate than phylogenetics approaches in reconstructing copy number lineage. From data from 20 triple-negative breast cancer patients, our approaches effectively prioritize genes that are essential for breast cancer cell fitness and predict patient survival, including those implicating convergent evolution.The source code of our study is available at https://github.com/KChen-lab/MEDALT.


2014 ◽  
Vol 46 (5) ◽  
pp. 487-491 ◽  
Author(s):  
Serena Nik-Zainal ◽  
David C Wedge ◽  
Ludmil B Alexandrov ◽  
Mia Petljak ◽  
Adam P Butler ◽  
...  

2014 ◽  
Vol 74 (17) ◽  
pp. 4853-4863 ◽  
Author(s):  
David Endesfelder ◽  
Rebecca A. Burrell ◽  
Nnennaya Kanu ◽  
Nicholas McGranahan ◽  
Mike Howell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document