scholarly journals Tocilizumab, but not dexamethasone, prevents CRS without affecting antitumor activity of bispecific antibodies

2020 ◽  
Vol 8 (1) ◽  
pp. e000621 ◽  
Author(s):  
Joseph Kauer ◽  
Sebastian Hörner ◽  
Lukas Osburg ◽  
Stefanie Müller ◽  
Melanie Märklin ◽  
...  

Bispecific antibodies (bsAb) and chimeric antigen receptor (CAR) T cells allow for antibody guided recruitment of T cells against tumors. Both are successfully used for treatment of CD19 expressing leukemias, but may cause cytokine release syndrome (CRS) as a major dose-limiting side effect. For CRS prevention, steroids are recommended prior to bsAb treatment, despite their well-known lymphotoxic activity. The IL-6 receptor antibody tocilizumab is established for treatment of CRS induced by CAR T cells, but was not considered for CRS prevention in bsAb therapy. We here compared the influence of dexamethasone and tocilizumab on bsAb-mediated T cell proliferation and tumor lysis in vitro and in vivo and found that dexamethasone profoundly inhibited T cell proliferation and antitumor activity as induced by two different bsAb, particularly at low effector:target ratios, whereas tocilizumab did not affect efficacy. When we applied tocilizumab early during treatment of three patients with a newly developed PSMAxCD3 bsAb, significant CRS attenuation despite high IL-6 serum levels was observed. Thus, early IL-6 blockade may reduce the undesired sequelae of CRS upon bsAb therapy without affecting therapeutic activity, allowing in turn for safe application of effective doses.

2021 ◽  
Author(s):  
Taylor L Hickman ◽  
Eugene Choi ◽  
Kathleen R Whiteman ◽  
Sujatha Muralidharan ◽  
Tapasya Pai ◽  
...  

Purpose: The solid tumor microenvironment (TME) drives T cell dysfunction and inhibits the effectiveness of immunotherapies such as chimeric antigen receptor-based T cell (CAR T) cells. Early data has shown that modulation of T cell metabolism can improve intratumoral T cell function in preclinical models. Experimental Design: We evaluated GPC3 expression in human normal and tumor tissue specimens. We developed and evaluated BOXR1030, a novel CAR T therapeutic co-expressing glypican-3 (GPC3)-targeted CAR and exogenous glutamic-oxaloacetic transaminase 2 (GOT2) in terms of CAR T cell function both in vitro and in vivo. Results: Expression of tumor antigen GPC3 was observed by immunohistochemical staining in tumor biopsies from hepatocellular carcinoma, liposarcoma, squamous lung cancer, and Merkel cell carcinoma patients. Compared to control GPC3 CAR alone, BOXR1030 (GPC3-targeted CAR T cell that co-expressed GOT2) demonstrated superior in vivo efficacy in aggressive solid tumor xenograft models, and showed favorable attributes in vitro including an enhanced cytokine production profile, a less-differentiated T cell phenotype with lower expression of stress and exhaustion markers, an enhanced metabolic profile and increased proliferation in TME-like conditions. Conclusions: Together, these results demonstrated that co-expression of GOT2 can substantially improve the overall antitumor activity of CAR T cells by inducing broad changes in cellular function and phenotype. These data show that BOXR1030 is an attractive approach to targeting select solid tumors. To this end, BOXR1030 will be explored in the clinic to assess safety, dose-finding, and preliminary efficacy (NCT05120271).


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 1032-1032
Author(s):  
Saisha Abhay Nalawade ◽  
Paul Shafer ◽  
Pradip Bajgain ◽  
Katie McKenna ◽  
Arushana Ali ◽  
...  

1032 Background: Successful targeting of solid tumors such as breast cancer (BC) using CAR T cells (CARTs) has proven challenging, largely due to the immune suppressive tumor microenvironment (TME). Myeloid derived suppressor cells (MDSCs) inhibit CART’s function and persistence within the breast TME. We generated CAR T cells targeting tumor-expressed mucin 1 (MUC1) (Bajgain P et al, 2018) for BC. To potentiate expansion and persistence of MUC1 CARTs and modulate the suppressive TME, we developed a novel chimeric co-stimulatory receptor, TR2.4-1BB, encoding a ScFv derived from a TNF-related apoptosis-inducing ligand receptor 2 (TR2) mAb followed by a 4-1BB endodomain. We hypothesize that engagement with TR2 expressed on TME-resident MDSCs, will lead to both MDSC apoptosis and CART co-stimulation, promoting T cell persistence and expansion at tumor site. Methods: Function of the novel TR2.4-1BB receptor, was assessed by exposing non-transduced (NT) and TR2.4-1BB transduced T cells to recombinant TR2 and nuclear translocation of NFκB was measured by ELISA. Functionality of in vitro generated MDSCs was determined by the suppression assay. In vitro CART/costimulatory receptor T cell function was measured by cytotoxicity assays using MUC1+ tumor targets in presence or absence of MDSCs. In vivo anti-tumor activity was assessed using MDSC enriched tumor-bearing mice using calipers to assess tumor volume and bioluminescence imaging to track T cells. Results: Nuclear translocation of NFκB was detected only in TR2.4-1BB T cells. MDSCs significantly attenuated T cell proliferation by 50±5% and IFNγ production by half compared with T cells cultured alone. Additionally, presence of MDSCs, diminished cytotoxic potential of MUC1 CARTs against MUC1+ BC cell lines by 25%. However, TR2.4-1BB expression on CAR.MUC1 T cells induced MDSC apoptosis thereby restoring the cytotoxic activity of CAR.MUC1 against MUC1+ BC lines in presence of TR2.4-1BB (67±8.5%). There was an approximate two-fold increase in tumor growth due enhanced angiogenesis and fibroblast accumulation in mice receiving tumors + MDSCs compared to tumors alone. Treatment of these MDSC-enriched tumors with MUC1.TR2.4-1BB CARTs led to superior tumor cell killing and significant reduction in tumor growth (24.54±8.55 mm3) compared to CAR.MUC1 (469.79.9±81.46mm3) or TR2.4-1BB (434.86±64.25 mm3) T cells alone (Day 28 after T cell injection). The treatment also improved T cell proliferation and persistence at the tumor site. Thereby, leading to negligible metastasis demonstrating ability of CARTs to eliminate tumor and prevent dissemination. We observed similar results using HER2.TR2.4-1BB CARTs in a HER2+ BC model. Conclusions: Our findings demonstrate that CARTs co-expressing our novel TR2.4-1BB receptor have higher anti-tumor potential against BC tumors and infiltrating MDSCs, resulting in TME remodeling and improved T cell proliferation at the tumor site.


Blood ◽  
2012 ◽  
Vol 119 (3) ◽  
pp. 696-706 ◽  
Author(s):  
De-Gang Song ◽  
Qunrui Ye ◽  
Mathilde Poussin ◽  
Gretchen M. Harms ◽  
Mariangela Figini ◽  
...  

AbstractThe costimulatory effects of CD27 on T lymphocyte effector function and memory formation has been confined to evaluations in mouse models, in vitro human cell culture systems, and clinical observations. Here, we tested whether CD27 costimulation actively enhances human T-cell function, expansion, and survival in vitro and in vivo. Human T cells transduced to express an antigen-specific chimeric antigen receptor (CAR-T) containing an intracellular CD3 zeta (CD3ζ) chain signaling module with the CD27 costimulatory motif in tandem exerted increased antigen-stimulated effector functions in vitro, including cytokine secretion and cytotoxicity, compared with CAR-T with CD3ζ alone. After antigen stimulation in vitro, CD27-bearing CAR-T cells also proliferated, up-regulated Bcl-XL protein expression, resisted apoptosis, and underwent increased numerical expansion. The greatest impact of CD27 was noted in vivo, where transferred CAR-T cells with CD27 demonstrated heightened persistence after infusion, facilitating improved regression of human cancer in a xenogeneic allograft model. This tumor regression was similar to that achieved with CD28- or 4-1BB–costimulated CARs, and heightened persistence was similar to 4-1BB but greater than CD28. Thus, CD27 costimulation enhances expansion, effector function, and survival of human CAR-T cells in vitro and augments human T-cell persistence and antitumor activity in vivo.


2021 ◽  
Vol 9 (12) ◽  
pp. e003176
Author(s):  
Songbo Zhao ◽  
Chunhua Wang ◽  
Ping Lu ◽  
Yalin Lou ◽  
Huimin Liu ◽  
...  

BackgroundChimeric antigen receptor (CAR) T cells have been successfully used in tumor immunotherapy due to their strong antitumor responses, especially in hematological malignancies such as B cell acute lymphoid leukemia. However, on-target off-tumor toxicity and poor persistence severely limit the clinical application of CAR-T cell therapy.MethodsT-cell immunoglobulin mucin domain molecule 3 (TIM-3) was used to develop a second-generation 41BB CD19 CAR linked with a T3/28 chimera, in which truncated extracellular TIM-3 was fused with the CD28 transmembrane and cytoplasmic domains. The efficacy of T3/28 CAR-T cells was evaluated in vitro and in vivo.ResultsWe demonstrated that the switch receptor T3/28 preserved the TCM phenotype, improved proliferative capacity, and reduced exhaustion of CAR-T cells, resulting in superior in vitro and in vivo antitumor activity in B lymphoma. Importantly, the switch receptor T3/28 substantially prolonged the persistence of CAR-T cells, and the interleukin-21/Stat3 axis probably contributed to the enhanced cytotoxicity of T3/28 CAR-T cells.ConclusionOverall, the T3/28 chimera significantly prolonged the persistence of CAR-T cells, and T3/28 CAR-T cells possessed potent antitumor activity in mice, shedding new light on potential improvements in adoptive T cell therapies.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A43.2-A43
Author(s):  
AM Senz ◽  
P Metzger ◽  
RK Rubens ◽  
B Cadilha ◽  
M Kirmaier ◽  
...  

BackgroundIndoleamine-2,3-dioxygenase 1 (IDO1) is a cytosolic enzyme that catalyzes the rate limiting reaction in the kynurenine pathway. Dendritic cells, macrophages and several tumor entities have been described to express IDO1. In the tumor microenvironment IDO1 promotes tryptophan starvation and accumulation of kynurenines which result in T effector cell proliferation arrest and T regulatory cell induction. Additionally, IDO1 possesses two immunoreceptor tyrosine-based inhibitory motifs (ITIM) that upon phosphorylation can act as docking sites for the recruitment and activation of the tyrosine phosphatases SHP–1 and SHP–2 and ultimately to an activation of the non-canonical NF-ΚB pathway. Whether IDO1 is expressed in T cells and its potential function is unknown.Materials and MethodsUsing IDO1-deleted splenocytes from CD4-Cre Ido1fl/fl mice and WT controls, we evaluated the induction of IDO1 in T cells, as well as the effect of IDO1 in T cell proliferation, differentiation and metabolism. Additionally, we compared in vitro and in vivo the cytotoxic activity of anti-epithelial cell adhesion molecule (EpCAM) chimeric antigen receptor (CAR) T cells using pancreatic tumor cell lines.ResultsIDO1 is inducible in primary mouse T cells upon T cell activation and type I and type II interferon signaling. Interestingly, the use of IDO1 knockout CAR T cells prolongs survival and improves tumor control compared to WT CAR T cell treatment in subcutaneous and orthotopic pancreatic cancer models. In vitro, T cell proliferation, differentiation and cytotoxic function is comparable in WT and IDO1-deleted T cells. RNA sequencing, metabolic and in vivo tracking studies are currently being performed to pin down IDO1-intrinsic effects on CAR T cells.ConclusionsIDO1 is expressed in T cells upon T cell receptor and IFN stimulation and appears to negatively affect tumor control mediated by CAR T cells. Specific IDO1 deletion may improve therapeutic efficacy of CAR T cells in solid tumors, such as pancreatic cancer.Disclosure InformationA.M. Senz: None. P. Metzger: None. R.K. Rubens: None. B. Cadilha: None. M. Kirmaier: None. S. Lesch: None. M.R. Benmebarek: None. S. Theurich: None. P. Murray: None. S. Endres: None. S. Kobold: None. L.M. König: None. P. Duewell: None. M. Schnurr: None.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3086-3086
Author(s):  
Ryan Urak ◽  
ChingLam Wong ◽  
Wen-Chung Chang ◽  
Elizabeth E. Budde ◽  
Christine Brown ◽  
...  

Abstract Insufficient persistence and effector function of Chimeric Antigen Receptor (CAR) re-directed T cells in vivo has been a challenge for adoptive T cell therapy. Generation of long-lived potent CAR T cells is an increasing demand in the field. AKT activation triggered by convergent extracellular signals evokes a transcription program that enhances effector functions. However, sustained AKT activation severely impairs T cell memory and protective immunity because AKT drives differentiation of effectors, therefore diminishing T cell potential to survive and differentiate into memory cells. We now investigate whether inhibition of AKT signaling during ex vivo expansion can prevent terminal differentiation of CD19- chimeric antigen receptor (CD19 CAR) engineered T cells and increase the number of memory CD19 CAR T cells, which would enhance the antitumor activity following adoptive therapy. CD8+ T cells from healthy donors were isolated, activated with CD3/CD28 beads, and then transduced with a lentiviral vector encoding a second-generation CD19CAR containing a CD28 co-stimulatory domain and two mutations (L235E; N297Q) within the CH2 region on the IgG4-Fc spacers which enhances potency and persistence by blocking Fc receptor binding. In addition, the lentiviral construct also expresses a truncated human epidermal growth factor receptor (huEGFRt) which allows us to use as a selectable marker and a mechanism to ablate the CAR T cells if necessary. IL-2 (50U/mL) and AKT inhibitor (1uM/mL) were supplemented every other day. Transduced CD19CAR T cells without AKT inhibitor treatment were used as controls. The engineered CD19CAR T cells were expanded in vitro for 21 days before in vitro and in vivo analyses. We found that AKT inhibitor did not compromise the CD19CAR T cell proliferation and survival in vitro. There was a comparable CD19CAR T cell expansion after culturing in the presence or absence AKT inhibitor. Functionally, AKT inhibitor did not dampen the effector function of CD19CAR T cells as indicated by equivalent levels of interferon gamma production and CD107a expression upon CD19 antigen stimulation. Memory-like phenotype such as CD62L and CD28 expression on CAR T cells is associated with better antitumor activity in vivo. We therefore characterized the CD19CAR T cells after ex vivo expansion. We found that 40% of AKT-inhibited CD19CAR T cells expressed CD62L and co-expressed CD28. More importantly, no exhaustion markers such as KRLG and PD-1 were induced on the AKT inhibitor treated cells. In contrast, only 10% of control untreated CD19CAR T cells expressed CD62L and they were CD28 negative, indicating that AKT-inhibited CD19CAR T cells with higher levels of CD62L and CD28 expression may have superior anti-tumor activity following adoptive transfer. To test the potency of the AKT inhibitor treated CAR T cells, 0.5x106 CD19+ acute lymphoid leukemic cells (SupB15) engineered to express firefly luciferase were inoculated intravenously into NOD/Scid IL-2RgammaCnull (NSG) mice. Five days post tumor engraftment, 2x106 CD8+ CD19CAR T cells were intravenously injected into tumor bearing mice. Control mice received either no T cells, non-transduced T cells (Mock), or CD19CAR T cells that were not treated with AKT inhibitor during in vitro expansion. Tumor signals post T cell infusion were monitored by biophotonic imaging. Compared to the untreated CD19CAR T cells, which exhibited lower and transient anti-tumor activity, AKT inhibitor treated CD19CAR T cells completely eradicated the CD19+ tumor in all mice (Figure 1) 21 days post CD19CAR T cell infusion. In conclusion, our results demonstrate that inhibition of AKT signaling during the ex vivo priming and expansion gives rise to a CD19CAR T cell population that possesses superior antitumor activity. These findings suggest that ex vivo therapeutic modulation of AKT might be a strategy to augment antitumor immunity for adoptive CAR T cell therapy, which could easily be transitioned into the clinic with the availability of pharmaceutical grade AKT inhibitor. Disclosures Forman: Amgen: Consultancy; Mustang: Research Funding.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


Leukemia ◽  
2021 ◽  
Author(s):  
Christos Georgiadis ◽  
Jane Rasaiyaah ◽  
Soragia Athina Gkazi ◽  
Roland Preece ◽  
Aniekan Etuk ◽  
...  

AbstractTargeting T cell malignancies using chimeric antigen receptor (CAR) T cells is hindered by ‘T v T’ fratricide against shared antigens such as CD3 and CD7. Base editing offers the possibility of seamless disruption of gene expression of problematic antigens through creation of stop codons or elimination of splice sites. We describe the generation of fratricide-resistant T cells by orderly removal of TCR/CD3 and CD7 ahead of lentiviral-mediated expression of CARs specific for CD3 or CD7. Molecular interrogation of base-edited cells confirmed elimination of chromosomal translocations detected in conventional Cas9 treated cells. Interestingly, 3CAR/7CAR co-culture resulted in ‘self-enrichment’ yielding populations 99.6% TCR−/CD3−/CD7−. 3CAR or 7CAR cells were able to exert specific cytotoxicity against leukaemia lines with defined CD3 and/or CD7 expression as well as primary T-ALL cells. Co-cultured 3CAR/7CAR cells exhibited highest cytotoxicity against CD3 + CD7 + T-ALL targets in vitro and an in vivo human:murine chimeric model. While APOBEC editors can reportedly exhibit guide-independent deamination of both DNA and RNA, we found no problematic ‘off-target’ activity or promiscuous base conversion affecting CAR antigen-specific binding regions, which may otherwise redirect T cell specificity. Combinational infusion of fratricide-resistant anti-T CAR T cells may enable enhanced molecular remission ahead of allo-HSCT for T cell malignancies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A121-A121
Author(s):  
Nina Chu ◽  
Michael Overstreet ◽  
Ryan Gilbreth ◽  
Lori Clarke ◽  
Christina Gesse ◽  
...  

BackgroundChimeric antigen receptors (CARs) are engineered synthetic receptors that reprogram T cell specificity and function against a given antigen. Autologous CAR-T cell therapy has demonstrated potent efficacy against various hematological malignancies, but has yielded limited success against solid cancers. MEDI7028 is a CAR that targets oncofetal antigen glypican-3 (GPC3), which is expressed in 70–90% of hepatocellular carcinoma (HCC), but not in normal liver tissue. Transforming growth factor β (TGFβ) secretion is increased in advanced HCC, which creates an immunosuppressive milieu and facilitates cancer progression and poor prognosis. We tested whether the anti-tumor efficacy of a GPC3 CAR-T can be enhanced with the co-expression of dominant-negative TGFβRII (TGFβRIIDN).MethodsPrimary human T cells were lentivirally transduced to express GPC3 CAR both with and without TGFβRIIDN. Western blot and flow cytometry were performed on purified CAR-T cells to assess modulation of pathways and immune phenotypes driven by TGFβ in vitro. A xenograft model of human HCC cell line overexpressing TGFβ in immunodeficient mice was used to investigate the in vivo efficacy of TGFβRIIDN armored and unarmored CAR-T. Tumor infiltrating lymphocyte populations were analyzed by flow cytometry while serum cytokine levels were quantified with ELISA.ResultsArmoring GPC3 CAR-T with TGFβRIIDN nearly abolished phospho-SMAD2/3 expression upon exposure to recombinant human TGFβ in vitro, indicating that the TGFβ signaling axis was successfully blocked by expression of the dominant-negative receptor. Additionally, expression of TGFβRIIDN suppressed TGFβ-driven CD103 upregulation, further demonstrating attenuation of the pathway by this armoring strategy. In vivo, the TGFβRIIDN armored CAR-T achieved superior tumor regression and delayed tumor regrowth compared to the unarmored CAR-T. The armored CAR-T cells infiltrated HCC tumors more abundantly than their unarmored counterparts, and were phenotypically less exhausted and less differentiated. In line with these observations, we detected significantly more interferon gamma (IFNγ) at peak response and decreased alpha-fetoprotein in the serum of mice treated with armored cells compared to mice receiving unarmored CAR-T, demonstrating in vivo functional superiority of TGFβRIIDN armored CAR-T therapy.ConclusionsArmoring GPC3 CAR-T with TGFβRIIDN abrogates the signaling of TGFβ in vitro and enhances the anti-tumor efficacy of GPC3 CAR-T against TGFβ-expressing HCC tumors in vivo, proving TGFβRIIDN to be an effective armoring strategy against TGFβ-expressing solid malignancies in preclinical models.Ethics ApprovalThe study was approved by AstraZeneca’s Ethics Board and Institutional Animal Care and Use Committee (IACUC).


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A133-A133
Author(s):  
Cheng-Fu Kuo ◽  
Yi-Chiu Kuo ◽  
Miso Park ◽  
Zhen Tong ◽  
Brenda Aguilar ◽  
...  

BackgroundMeditope is a small cyclic peptide that was identified to bind to cetuximab within the Fab region. The meditope binding site can be grafted onto any Fab framework, creating a platform to uniquely and specifically target monoclonal antibodies. Here we demonstrate that the meditope binding site can be grafted onto chimeric antigen receptors (CARs) and utilized to regulate and extend CAR T cell function. We demonstrate that the platform can be used to overcome key barriers to CAR T cell therapy, including T cell exhaustion and antigen escape.MethodsMeditope-enabled CARs (meCARs) were generated by amino acid substitutions to create binding sites for meditope peptide (meP) within the Fab tumor targeting domain of the CAR. meCAR expression was validated by anti-Fc FITC or meP-Alexa 647 probes. In vitro and in vivo assays were performed and compared to standard scFv CAR T cells. For meCAR T cell proliferation and dual-targeting assays, the meditope peptide (meP) was conjugated to recombinant human IL15 fused to the CD215 sushi domain (meP-IL15:sushi) and anti-CD20 monoclonal antibody rituximab (meP-rituximab).ResultsWe generated meCAR T cells targeting HER2, CD19 and HER1/3 and demonstrate the selective specific binding of the meditope peptide along with potent meCAR T cell effector function. We next demonstrated the utility of a meP-IL15:sushi for enhancing meCAR T cell proliferation in vitro and in vivo. Proliferation and persistence of meCAR T cells was dose dependent, establishing the ability to regulate CAR T cell expansion using the meditope platform. We also demonstrate the ability to redirect meCAR T cells tumor killing using meP-antibody adaptors. As proof-of-concept, meHER2-CAR T cells were redirected to target CD20+ Raji tumors, establishing the potential of the meditope platform to alter the CAR specificity and overcome tumor heterogeneity.ConclusionsOur studies show the utility of the meCAR platform for overcoming key challenges for CAR T cell therapy by specifically regulating CAR T cell functionality. Specifically, the meP-IL15:sushi enhanced meCAR T cell persistence and proliferation following adoptive transfer in vivo and protects against T cell exhaustion. Further, meP-ritiuximab can redirect meCAR T cells to target CD20-tumors, showing the versatility of this platform to address the tumor antigen escape variants. Future studies are focused on conferring additional ‘add-on’ functionalities to meCAR T cells to potentiate the therapeutic effectiveness of CAR T cell therapy.


Sign in / Sign up

Export Citation Format

Share Document