scholarly journals P09.12 Bifunctional SIRPα-CD123 fusion antibody for the elimination of acute myeloid leukemia stem cells

2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A58.1-A58
Author(s):  
S Tahk ◽  
SM Schmitt ◽  
B Vick ◽  
C Augsberger ◽  
L Pascual Ponce ◽  
...  

BackgroundDespite advances in the development of novel strategies against acute myeloid leukemia (AML), treatment options are limited and most patients relapse. Relapse occurs due to the persistence of chemotherapy-resistant leukemic stem cells (LSCs), which re-initiate the outgrowth of the disease, highlighting the need of targeting LSCs to improve patient survival. LSCs are characterized by the expression of the interleukin-3 receptor α, also known as CD123. CD123 is expressed on AML blasts and LSCs, and shows a moderate expression on normal hematopoietic stem cells, claiming CD123 as a suitable target antigen. CD47 is a ubiquitously expressed immune checkpoint upregulated on LSCs where it acts as an immune escape mechanism. CD47 transmits a ‘don’t eat me’ signal upon its interaction with the signal regulatory protein alpha (SIRPα) receptor on macrophages, thus inhibiting phagocytosis. In order to efficiently eliminate LSCs, we have designed a bifunctional antibody that specifically targets CD123 and simultaneously blocks CD47. Importantly, our strategy restricts the benefits of the CD47 blockade to CD123+ AML cells. Thus, we hypothesize a lower risk for on-target off-leukemia toxicity.Materials and MethodsThe bifunctional SIRPα-CD123 antibody was generated by fusing an extracellular domain of the SIRPα receptor, which functions as the CD47 blocking domain, to the CD123 antibody. The biological activity of the SIRPα-CD123 antibody was examined using AML-derived MOLM-13 cells, primary AML patient material and patient-derived xenografted (PDX) AML cells with NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice.ResultsThe SIRPα fusion improved the binding of the bifunctional SIRPα-CD123 antibody to AML cells compared to a conventional CD123 antibody. The SIRPα-CD123 antibody enhanced the elimination of the AML-derived MOLM-13 cells by antibody-dependent cellular cytotoxicity via NK cells. Additionally, the cytotoxicity was confirmed using primary patient-derived AML cells. Furthermore, an improved cytotoxicity towards leukemia initiating AML PDX cells was observed with the SIRPα-CD123 antibody using luciferase bioluminescence in vivo imaging. With regards to the inhibition of CD47 signaling, we were able to show a blockade of CD47 on CD123+CD47+ cells by the SIRPα-CD123 antibody. Correspondingly, a significant increase in phagocytosis of primary patient-derived AML cells mediated by monocyte-derived macrophages was observed in both allogenic and autologous setting. We were also able to show a preferential binding to MOLM-13 in the presence of a 20-fold excess of red blood cells indicating a potential low on-target off-leukemia toxicity.ConclusionsThe bifunctional SIRPα-CD123 fusion antibodies target the CD123+CD47+ cells and stimulate their phagocytosis by blocking the inhibitory CD47 signal. The dual mode of action of the SIRPα-CD123 has the potential to deplete the AML LSCs through NK cell cytotoxicity and macrophage-mediated phagocytosis while restricting the CD47 related on-target off-leukemia toxicity.SupportH2020-EU grant agreement no 641549Disclosure InformationS. Tahk: None. S.M. Schmitt: None. B. Vick: None. C. Augsberger: None. L. Pascual Ponce: None. I. Jeremias: None. G. Wittmann: None. M. Subklewe: None. N.C. Fenn: None. K. Hopfner: None.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2544-2544 ◽  
Author(s):  
Siret Tahk ◽  
Saskia Schmitt ◽  
Christian Peter Augsberger ◽  
Binje Vick ◽  
Laia Pascual Ponce ◽  
...  

Background: Despite considerable advances in the development of novel strategies for the treatment of acute myeloid leukemia (AML) the relapse rate is still high with only limited treatment options. Relapse occurs due to the persistence of chemotherapy-resistant leukemic stem cells (LSCs), which re-initiate outgrowth of the disease, highlighting the need of targeting LSCs to improve overall survival. Immunotherapies represent a promising strategy to target chemotherapy-resistant LSCs in AML. LSCs are characterized by the expression of the interleukin-3 receptor α, also known as CD123. CD123 is expressed on AML blasts and LSCs, and shows only a moderate expression on normal hematopoietic stem cells, claiming CD123 as a suitable target antigen (Haubner et al, Leukemia 2019). CD47, known as a marker of self, is also highly expressed on LSCs as immune escape mechanism. CD47 transmits a "don't eat me" signal upon its interaction with the myeloid-specific signal regulatory protein alpha (SIRPα) receptor on macrophages, thus inhibiting phagocytosis. In order to efficiently eliminate LSCs and provide AML patients a possibility for prolonged relapse-free survival, we have designed a bifunctional antibody that specifically targets CD123 and simultaneously blocks CD47. Importantly, our strategy restricts the benefits of the CD47 blockade to CD123 positive AML cells. Thus, we hypothesize a lower risk for on-target off-leukemia toxicity. Methods: The bifunctional SIRPα-CD123 antibody was generated by fusing the endogenous extracellular domain of SIRPα, which functions as the CD47 blocking domain, to an CD123 antibody CD123. We assessed the selective binding of the bifunctional antibody to CD123+CD47+ AML-derived cells and the ability to block CD47 on CD123+ cells in vitro. Furthermore, the biological activity of the SIRPα-CD123 antibody was examined using the AML-derived cell line MOLM-13, patient-derived xenografted (PDX) AML cells as well as primary cells from patients with newly diagnosed or relapsed AML. Results: We engrafted the endogenous SIRPα V-like domain to an antibody targeting CD123, which improved the binding of the bifunctional SIRPα-CD123 antibody to AML cells compared to a conventional CD123 antibody (MFI ratioCD123 = 2.46 0.25 vs MFI ratioSIRPα-CD123 = 4.44 0.60). The SIRPα-CD123 antibody enhanced the elimination of the AML-derived MOLM-13 cells by antibody-dependent cellular cytotoxicity (EC50CD123 = 38.5 pM vs EC50SIRPα-CD123 = 10.1 pM, n = 9). Additionally, the cytotoxicity was confirmed using primary patient-derived AML cells ex vivo. Further, an improved ex vivo cytotoxicity towards AML PDX cells was observed with the SIRPα-CD123 antibody (% lysis at 100 nM: 14.27 5.40 vs 42.94 10.21 for CD123 and SIRPα-CD123 antibodies respectively, n = 3). With regards to the inhibition of CD47 signaling, we were able to show a blockade of CD47 on CD123+CD47+ positive cells by the SIRPα-CD123 antibody. Correspondingly, a significant increase in phagocytosis of primary patient-derived AML cells mediated by monocyte-derived macrophages was observed in allogenic as well as autologous settings (% phagocytosis, normalized to isotype control and maximum phagocytosis in an autologous setting: 20.11 4.59 vs 90.37 6.22, n = 5 for CD123 and SIRPα-CD123 antibodies, respectively). We were further able to show a preferential binding to MOLM-13 in the presence of a 20-fold excess of red blood cells indicating a potential low on-target off-leukemia toxicity. Taken together, our in vitro data supports the elimination of the CD123+CD47+ positive AML LSC compartment by a synergistic effect of avidity-dependent binding to CD123 and CD47 and the simultaneous inhibition of the innate immune CD47-SIRPα signaling pathway. Conclusions: The SIRPα-CD123 is a bifunctional antibody with the potential to deplete CD123+CD47+ AML LSCs by a dual mode of action mechanism resulting in NK cell dependent cytotoxicity and macrophage-mediated phagocytosis. By combining a high affinity binding to CD123+ cells and a low affinity CD47 blockade that is restricted to CD123+ cancer cells we effectively minimize the risk for CD47-related on-target off-leukemia toxicity. The results of our in vitro assays using AML cell lines are consistent with the data from PDX and primary AML samples and support further preclinical testing of the SIRPα-CD123 antibody in vivo. Disclosures Subklewe: Miltenyi: Research Funding; Pfizer: Consultancy, Honoraria; Gilead: Consultancy, Honoraria, Research Funding; AMGEN: Consultancy, Honoraria, Research Funding; Oxford Biotherapeutics: Research Funding; Roche: Consultancy, Research Funding; Celgene: Consultancy, Honoraria; Morphosys: Research Funding; Janssen: Consultancy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yang Xiao ◽  
Jinghong Chen ◽  
Jia Wang ◽  
Wei Guan ◽  
Mengzhen Wang ◽  
...  

Acute myeloid leukemia (AML), a malignant disorder of hemopoietic stem cells. AML can escape immunosurveillance of natural killer (NK) by gene mutation, fusions, and epigenetic modification, while the mechanism is not clearly understood. Here we show that the expression of Intercellular adhesion molecule‐1 (ICAM‐1, CD54) is silenced in AML cells. Decitabine could upregulate ICAM-1 expression, which contributes to the NK-AML cell conjugates and helps NK cells kill AML cells. We also show that ICAM-1 high expression can reverse the AML immune evasion and activate NK cells function in vivo. This study suggests that a combination of the hypomethylating agent and NK cell infusion could be a new strategy to cure AML.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongliang Liu ◽  
Guiqin Wang ◽  
Jiasi Zhang ◽  
Xue Chen ◽  
Huailong Xu ◽  
...  

Abstract Background Leukemia stem cells (LSCs) are responsible for the initiation, progression, and relapse of acute myeloid leukemia (AML). Therefore, a therapeutic strategy targeting LSCs is a potential approach to eradicate AML. In this study, we aimed to identify LSC-specific surface markers and uncover the underlying mechanism of AML LSCs. Methods Microarray gene expression data were used to investigate candidate AML-LSC-specific markers. CD9 expression in AML cell lines, patients with AML, and normal donors was evaluated by flow cytometry (FC). The biological characteristics of CD9-positive (CD9+) cells were analyzed by in vitro proliferation, chemotherapeutic drug resistance, migration, and in vivo xenotransplantation assays. The molecular mechanism involved in CD9+ cell function was investigated by gene expression profiling. The effects of alpha-2-macroglobulin (A2M) on CD9+ cells were analyzed with regard to proliferation, drug resistance, and migration. Results CD9, a cell surface protein, was specifically expressed on AML LSCs but barely detected on normal hematopoietic stem cells (HSCs). CD9+ cells exhibit more resistance to chemotherapy drugs and higher migration potential than do CD9-negative (CD9−) cells. More importantly, CD9+ cells possess the ability to reconstitute human AML in immunocompromised mice and promote leukemia growth, suggesting that CD9+ cells define the LSC population. Furthermore, we identified that A2M plays a crucial role in maintaining CD9+ LSC stemness. Knockdown of A2M impairs drug resistance and migration of CD9+ cells. Conclusion Our findings suggest that CD9 is a new biomarker of AML LSCs and is a promising therapeutic target.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2906-2912 ◽  
Author(s):  
D Haase ◽  
M Feuring-Buske ◽  
S Konemann ◽  
C Fonatsch ◽  
C Troff ◽  
...  

Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage the malignant transformation occurs. It was our aim to analyze the potential involvement of cells with the immunophenotype of pluripotent stem cells in the leukemic process by the use of cytogenetic and cell sorting techniques. Cytogenetic analyses of bone marrow aspirates were performed in 13 patients with AML (11 de novo and 2 secondary) and showed karyotype abnormalities in 10 cases [2q+, +4, 6p, t(6:9), 7, +8 in 1 patient each and inv(16) in 4 patients each]. Aliquots of the samples were fractionated by fluorescence-activated cell sorting of CD34+ cells. Two subpopulations, CD34+/CD38-(early hematopoietic stem cells) and CD34+/CD38+ (more mature progenitor cells), were screened for karyotype aberations as a marker for leukemic cells. Clonal abnormalities and evaluable metaphases were found in 8 highly purified CD34+/CD38-populations and in 9 of the CD34+/CD38-specimens, respectively. In the majority of cases (CD34+/CD38-, 6 of 8 informative samples; CD34+/CD38+, 5 of 9 informative samples), the highly purified CD34+ specimens also contained cytogenetically normal cells. Secondary, progression-associated chromosomal changes (+8, 12) were identified in the CD34+/CD38-cells of 2 patients. We conclude that clonal karyotypic abnormalities are frequently found in the stem cell-like (CD34+/CD38-) and more mature (CD34+/CD38+) populations of patients with AML, irrespective of the phenotype of the bulk population of leukemic blasts and of the primary or secondary character of the leukemia. Our data suggest that, in AML, malignant transformation as well as disease progression may occur at the level of CD34+/CD38-cells with multilineage potential.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3765-3765
Author(s):  
Cheuk-Him Man ◽  
David T. Scadden ◽  
Francois Mercier ◽  
Nian Liu ◽  
Wentao Dong ◽  
...  

Acute myeloid leukemia (AML) cells exhibit metabolic alterations that may provide therapeutic targets not necessarily evident in the cancer cell genome. Among the metabolic features we noted in AML compared with normal hematopoietic stem and progenitors (HSPC) was a strikingly consistent alkaline intracellular pH (pHi). Among candidate proton regulators, monocarboxylate transporter 4 (MCT4) mRNA and protein were differentially increased in multiple human and mouse AML cell lines and primary AML cells. MCT4 is a plasma membrane H+and lactate co-transporter whose activity necessarily shifts protons extracellularly as intracellular lactate is extruded. MCT4 activity is increased when overexpressed or with increased intracellular lactate generated by glycolysis in the setting of nutrient abundance. With increased MCT4 activity, extracellular lactate and protons will increase causing extracellular acidification while alkalinizing the intracellular compartment. MCT4-knockout (MCT4-KO) of mouse and human AMLdid not induce compensatory MCT1 expression, reduced pHi, suppressed proliferation and improved animal survival. Growth reduction was experimentally defined to be due to intracellular acidification rather than lactate accumulation by independent modulation of those parameters. MCT4-KOmetabolic profiling demonstrated decreased ATP/ADP and increased NADP+/NADPH suggesting suppression of glycolysis and the pentose phosphate pathway (PPP) that was confirmed by stable isotopic carbon flux analyses. Notably,the enzymatic activity of purified gatekeeper enzymes, hexokinase 1 (HK1), pyruvate kinase M2 isoform (PKM2) and glucose-6-phosphate dehydrogenase (G6PDH) was sensitive to pH with increased activity at the leukemic pHi (pH 7.6) compared to normal pHi (pH 7.3). Evaluating MCT4 transcriptional regulation, we defined that activating histonemarks, H3K27ac and H3K4me3, were enriched at the MCT4 promoter region as were transcriptional regulators MLL1 and Brd4 by ChIP in AML compared with normal cells. Pharmacologic inhibition of Brd4 suppressed Brd4 and H3K27ac enrichment and MCT4 expression in AML and reduced leukemic cell growth. To determine whether MCT4 based pHi changes were sufficient to increase cell proliferation, we overexpressed MCT4 in normal HSPC and demonstrated in vivo increases in growth in conjunction with pHi alkalization. Some other cell types also were increased in their growth kinetics by MCT4 overexpression and pHi increase. Therefore, proton shifting may be a means by which cells respond to nutrient abundance, co-transporting lactate and protons out of the cell, increasing the activity of enzymes that enhance PPP and glycolysis for biomass generation. Epigenetic changes in AML appear to exploit that process by increasing MCT4 expression to enforce proton exclusion thereby gaining a growth advantage without dependence on signaling pathways. Inhibiting MCT4 and intracellular alkalization may diminish the ability of AML to outcompete normal hematopoiesis. Figure Disclosures Scadden: Clear Creek Bio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Novartis: Other: Sponsored research; Editas Medicine: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Bone Therapeutics: Consultancy; Fog Pharma: Consultancy; Red Oak Medicines: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; LifeVaultBio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Magenta Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Agios Pharmaceuticals: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Fate Therapeutics: Consultancy, Equity Ownership.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A893-A893
Author(s):  
Laurent Gauthier ◽  
Angela Virone-Oddos ◽  
Angela Virone-Oddos ◽  
Jochen Beninga ◽  
Benjamin Rossi ◽  
...  

BackgroundThere is a clear need for targeted therapies to treat acute myeloid leukemia (AML), the most common acute leukemia in adults. CD123 (IL-3 receptor alpha chain) is an attractive target for AML treatment.1 However, cytotoxic antibody targeting CD123 proved insufficiently effective in a combination setting in phase II/III clinical trials.2 T-cell engagers targeting CD123 displayed some clinical efficacy but were often associated with cytokine release syndrome and neurotoxicity.3 Interest in the use of NK cells for therapeutic interventions has increased in recent years, as a potential safer alternative to T cells. Several NK-cell activating receptors, such as CD16a, NKG2D, and the natural cytotoxicity receptors NKp30 and NKp46, can be targeted to induce antitumor immunity. We previously reported the development of trifunctional NK-cell engagers (NKCEs) targeting a tumor antigen on cancer cells and co-engaging NKp46 and CD16a on NK cells.4MethodsWe report here the design, characterization and preclinical development of a novel trifunctional NK cell engager (NKCE) targeting CD123 on AML cells and engaging the activating receptors NKp46 and CD16a on NK cells. The CD123 NKCE therapeutic molecule was engineered with humanized antibodies targeting NKp464 and CD123.5 We compared CD123-NKCE and a cytotoxic ADCC-enhanced antibody (Ab) targeting CD123, in terms of antitumor activity in vitro, ex vivo and in vivo. Pharmacokinetic, pharmacodynamic and safety profile of CD123-NKCE were evaluated in non-human primate (NHP) studies.ResultsThe expression of the high affinity Fc gamma receptor CD64 on patient-derived AML cells inhibited the ADCC of the Ab targeting CD123 in vitro and ex vivo, but not the antitumor activity of CD123-NKCE. CD123-NKCE had potent antitumor activity against primary AML blasts and AML cell lines, promoted strong NK-cell activation and induced cytokine secretion only in the presence of AML target cells. Its antitumor activity in mouse model was greater than that of the comparator antibody. Moreover, CD123-NKCE had strong and prolonged pharmacodynamic effects in NHP when used at very low doses, was well-tolerated up to high 3 mg/kg dose and triggered only minor cytokine release.ConclusionsThe data for activity, safety, pharmacokinetics, and pharmacodynamics provided here demonstrate the superiority of CD123-NKCE over comparator cytotoxic antibody, in terms of antitumor activity in vitro, ex vivo, in vivo, and its favorable safety profile, as compared to T-cell therapies. These results constitute proof-of-principle for the efficacy of CD123-NKCE for controlling AML tumors in vivo, and provide consistent support for their clinical development.ReferencesEhninger A, Kramer M, Rollig C, et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J 2014;4:e218.Montesinos P, Gail J Roboz GJ, et al. Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: results from a multicenter, randomized, phase 2/3 study. Leukemia 2021;35(1):62–74.Uy GL, Aldoss I, Foster MC, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 2021;137(6):751–762.Gauthier L, Morel A, Anceriz N, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 2019;177(7):1701–13.Jin L, Lee EM, Ramshaw HS, et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 2009;5:31–42.


2020 ◽  
Vol 14 (6) ◽  
pp. 701-710
Author(s):  
Bin Gu ◽  
Jianhong Chu ◽  
Depei Wu

AbstractChimeric antigen receptor T cell (CAR T) therapies have achieved unprecedented efficacy in B-cell tumors, prompting scientists and doctors to exploit this strategy to treat other tumor types. Acute myeloid leukemia (AML) is a group of heterogeneous myeloid malignancies. Relapse remains the main cause of treatment failure, especially for patients with intermediate or high risk stratification. Allogeneic hematopoietic stem cell transplantation could be an effective therapy because of the graft-versus-leukemia effect, which unfortunately puts the patient at risk of serious complications, such as graft-versus-host disease. Although the identification of an ideal target antigen for AML is challenging, CAR T therapy remains a highly promising strategy for AML patients, particularly for those who are ineligible to receive a transplantation or have positive minimal residual disease. In this review, we focus on the most recent and promising advances in CAR T therapies for AML.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2962
Author(s):  
Antonella Bruzzese ◽  
Davide Leardini ◽  
Riccardo Masetti ◽  
Luisa Strocchio ◽  
Katia Girardi ◽  
...  

Myelodysplastic syndromes (MDS) are hematopoietic disorders rare in childhood, often occurring in patients with inherited bone marrow failure syndromes or germinal predisposition syndromes. Among the latter, one of the most frequent involves the gene GATA binding protein 2 (GATA2), coding for a transcriptional regulator of hematopoiesis. The genetic lesion as well as the clinical phenotype are extremely variable; many patients present hematological malignancies, especially MDS with the possibility to evolve into acute myeloid leukemia. Variable immune dysfunction, especially resulting in B- and NK-cell lymphopenia, lead to severe infections, including generalized warts and mycobacterial infection. Defects of alveolar macrophages lead to pulmonary alveolar proteinosis through inadequate clearance of surfactant proteins. Currently, there are no clear guidelines for the monitoring and treatment of patients with GATA2 mutations. In patients with MDS, the only curative treatment is allogeneic hematopoietic stem cell transplantation (HSCT) that restores normal hematopoiesis preventing the progression to acute myeloid leukemia and clears long-standing infections. However, to date, the donor type, conditioning regimen, and the optimal time to proceed to HSCT, as well as the level of chimerism needed to reverse the phenotype, remain unclear highlighting the need for consensus guidelines.


Sign in / Sign up

Export Citation Format

Share Document