scholarly journals O8 Gemcitabine induces pro-apoptotic BH3 only proteins and sensitizes pancreatic ductal adenocarcinoma cells for RLH-triggered immunogenic cell death

2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A7.1-A7
Author(s):  
P Metzger ◽  
HT Bourhis ◽  
M Stieg ◽  
D Böhmer ◽  
S Endres ◽  
...  

BackgroundDespite tremendous effort, the prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) remains poor and therapy options are limited. Recent advances in chemotherapeutic schemes have increased the survival of PDAC patients by a few months only. So far, the success of immunotherapy seen in other cancer types could not be transferred to PDAC. Our group has demonstrated that single agent RIG-I-like helicase (RLH)-targeting immunotherapy induces an anti-tumoral immune response and improves survival in a PDAC mouse model dependent on the induction of immunogenic cell death. In addition, we and others were able to show that tumor cell death induction by RLH ligands is partially dependent on the induction of the pro-apoptotic BH3-only proteins PUMA and NOXA. In the current study we aim at improving therapy response using a combinatorial chemo-immunotherapy (CIT) approach.MethodsTumor cell death induction by gemcitabine, oxaliplatin and 5-fluoruracil (5-FU) alone or in combination with RLH ligands was evaluated in the murine cell line Panc02. The induction of PUMA and NOXA was measured by real-time PCR. The capability of chemo-immunotherapy -induced tumor cell death to activate splenic CD8a+dendritic cells (DC) as well as to induce antigen uptake and cross-presentation was investigated in vitro. Therapeutic efficacy was evaluated in vivo using an orthotopic PDAC mouse model.ResultsGemcitabine, oxaliplatin and 5-FU induced dose-dependent tumor cell death in vitro. however, only gemcitabine lead to an induction of the pro-apoptotic proteins PUMA and NOXA. Simultaneous treatment with gemcitabine and RLH-ligand increased cell death induction without affecting the cytokine secretion substantially. CD8a+ DC activation upon RLH-therapy was not affected by chemotherapy. Of note, antigen uptake as well as T cell priming was increased by chemo-immunotherapy. Most importantly, the survival of orthotopic PDAC bearing mice was significantly prolonged in the chemo-immunotherapy group compared to single agent treatment.ConclusionsGemcitabine treatment of PDAC induces PUMA and NOXA expression which leads to mitochondrial priming and sensitization towards RLH-induced cell death. chemo-immunotherapy increases the cross-presentation capability of DC in vitro and prolongs the survival of PDAC bearing mice. chemo-immunotherapy is therefore an attractive combinatorial therapeutic approach in PDAC.FundingThe project was supported by the Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 179062510 and 329628492 - SFB 1321 as well as the Förderprogramm für Forschung und Lehre (FöFoLe) funded by the Ludwig-Maximilians-Universität München.Disclosure InformationP. Metzger: None. H.T. Bourhis: None. M. Stieg: None. D. Böhmer: None. S. Endres: None. P. Düwell: None. L.M. König: None. M. Schnurr: None.

2005 ◽  
Vol 0 (0) ◽  
pp. 050701034702004
Author(s):  
Markus H. Moehler ◽  
Maja Zeidler ◽  
Vanessa Wilsberg ◽  
Jan J. Cornelis ◽  
Thomas Woelfel ◽  
...  

2005 ◽  
Vol 0 (0) ◽  
pp. 050719131035001
Author(s):  
Markus H. Moehler ◽  
Maja Zeidler ◽  
Vanessa Wilsberg ◽  
Jan J. Cornelis ◽  
Thomas Woelfel ◽  
...  

2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii35-ii35
Author(s):  
M Ratliff ◽  
S Schlieper-Scherf ◽  
D Hausmann ◽  
E Jung ◽  
E Maier ◽  
...  

Abstract BACKGROUND Tumor microtubes (TMs) are ultralong membrane protrusions of tumor cells in astrocytic gliomas, including glioblastomas. TMs are used as routes for brain invasion and for cells to interconnect over long distances resulting in a functional network that allows multicellular communication. This network mediates resistance against the cytotoxicity of radiation and chemotherapy. One explanation for TM network protection is a better homeostasis of calcium ions that would otherwise increase to toxic intracellular levels in response to these therapies. Our working hypothesis is that interfering with the integrity of the glioblastoma cell network is key to a potential breakthrough in glioma therapy. Many cellular structures are polarized and composed of charged elements and are thus potential subjects to electrical forces; this might also influence the complex intercellular calcium waves (ICWs) that are characteristic for glioma networks. We were therefore interested in the effect of TTF on glioma network maintenance. MATERIAL AND METHODS To examine the effect of TTF on glioma TMs we have established a 2D in vitro glioma model using glioblastoma stem cells (GBSCs) grown in high-glucose medium and a 3D model using glioma tumor organoids. Both models reliably reproduce functionality and complexity of morphological features we observe in our mouse model. We analyzed the disruption of tumor network complexity and disruption of functionality by measuring intercellular calcium waves. Tumor cell death and proliferation was investigated in the 2D in vitro glioma model using the inovitroTM-System. RESULTS A peculiar “cricked-TM” phenotype that rarely (0.2% ±0.14) occurred under standard or control conditions was observed in TTF-treated cells (16.22% ±5.12). Cell number was reduced by 75% in two lines of GBSCs after 5 days of TTF exposure; predominantly TM-rich GBSCs (> 4 TMs) were affected. This reduction in tumor cell number corresponded with an increase in cell death (0.3% ±0.09 in untreated cells; 1.4% ±0.45 at day 5 of TTF exposure). The frequency of intercellular calcium transients, a measurement for calcium wave frequency in the glioma networks, was instantly reduced after TTF exposure to 58% ±20.42 of control levels in the primary GBSC 2D culture, and to 57.78% ±12.34 in tumor organoids derived from 3 glioblastoma patients. CONCLUSION This data suggests a potential effect of TTF application on tumor cell networks, at least in vitro. Interestingly, particularly those glioblastoma cells that have so far been proven to be resistant to radio- and chemotherapy appeared to be affected. We will confirm the observed effects of TTFs on tumor cell calcium signaling in our in vivo chronic cranial window mouse model. We anticipate that the results of our project will provide important insights into the underlying mechanism of TTF therapy.


2020 ◽  
Vol 8 (1) ◽  
pp. e000325 ◽  
Author(s):  
Luna Minute ◽  
Alvaro Teijeira ◽  
Alfonso R Sanchez-Paulete ◽  
Maria C Ochoa ◽  
Maite Alvarez ◽  
...  

BackgroundThe immune response to cancer is often conceptualized with the cancer immunity cycle. An essential step in this interpretation is that antigens released by dying tumors are presented by dendritic cells to naive or memory T cells in the tumor-draining lymph nodes. Whether tumor cell death resulting from cytotoxicity, as mediated by T cells or natural killer (NK) lymphocytes, is actually immunogenic currently remains unknown.MethodsIn this study, tumor cells were killed by antigen-specific T-cell receptor (TCR) transgenic CD8 T cells or activated NK cells. Immunogenic cell death was studied analyzing the membrane exposure of calreticulin and the release of high mobility group box 1 (HMGB1) by the dying tumor cells. Furthermore, the potential immunogenicity of the tumor cell debris was evaluated in immunocompetent mice challenged with an unrelated tumor sharing only one tumor-associated antigen and by class I major histocompatibility complex (MHC)-multimer stainings. Mice deficient inBatf3,Ifnar1andSting1were used to study mechanistic requirements.ResultsWe observe in cocultures of tumor cells and effector cytotoxic cells, the presence of markers of immunogenic cell death such as calreticulin exposure and soluble HMGB1 protein. Ovalbumin (OVA)-transfected MC38 colon cancer cells, exogenously pulsed to present the gp100 epitope are killed in culture by mouse gp100-specific TCR transgenic CD8 T cells. Immunization of mice with the resulting destroyed cells induces epitope spreading as observed by detection of OVA-specific T cells by MHC multimer staining and rejection of OVA+EG7 lymphoma cells. Similar results were observed in mice immunized with cell debris generated by NK-cell mediated cytotoxicity. Mice deficient inBatf3-dependent dendritic cells (conventional dendritic cells type 1, cDC1) fail to develop an anti-OVA response when immunized with tumor cells killed by cytotoxic lymphocytes. In line with this, cultured cDC1 dendritic cells uptake and can readily cross-present antigen from cytotoxicity-killed tumor cells to cognate CD8+T lymphocytes.ConclusionThese results support that an ongoing cytotoxic antitumor immune response can lead to immunogenic tumor cell death.


Nanomedicine ◽  
2019 ◽  
Vol 14 (18) ◽  
pp. 2423-2440 ◽  
Author(s):  
Canyu Yang ◽  
Bing He ◽  
Qiang Zheng ◽  
Dakuan Wang ◽  
Mengmeng Qin ◽  
...  

Aim: We developed a polycaprolactone-based nanoparticle (NP) to encapsulate tryptanthrin derivative CY-1-4 and evaluated its antitumor efficacy. Materials & methods: CY-1-4 NPs were prepared and evaluated for their cytotoxicity and associated mechanisms, indoleamine 2,3-dioxygenase (IDO)-inhibitory ability, immunogenic cell death (ICD)-inducing ability and antitumor efficacy. Results: CY-1-4 NPs were 123 nm in size. In vitro experiments indicated that they could both induce ICD and inhibit IDO. In vivo studies indicated that a medium dose reduced 58% of the tumor burden in a B16-F10-bearing mouse model, decreased IDO expression in tumor tissues and regulated lymphocytes subsets in spleen and tumors. Conclusion: CY-1-4 is a potential antitumor candidate that could act as a single agent with combined functions of IDO inhibition and ICD induction.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Xiaotian Sun ◽  
James M. Angelastro ◽  
David Merino ◽  
Qing Zhou ◽  
Markus D. Siegelin ◽  
...  

Abstract Survivin (BIRC5, product of the BIRC5 gene) is highly expressed in many tumor types and has been widely identified as a potential target for cancer therapy. However, effective anti-survivin drugs remain to be developed. Here we report that both vector-delivered and cell-penetrating dominant-negative (dn) forms of the transcription factor ATF5 that promote selective death of cancer cells in vitro and in vivo cause survivin depletion in tumor cell lines of varying origins. dn-ATF5 decreases levels of both survivin mRNA and protein. The depletion of survivin protein appears to be driven at least in part by enhanced proteasomal turnover and depletion of the deubiquitinase USP9X. Survivin loss is rapid and precedes the onset of cell death triggered by dn-ATF5. Although survivin downregulation is sufficient to drive tumor cell death, survivin over-expression does not rescue cancer cells from dn-ATF5-promoted apoptosis. This indicates that dn-ATF5 kills malignant cells by multiple mechanisms that include, but are not limited to, survivin depletion. Cell-penetrating forms of dn-ATF5 are currently being developed for potential therapeutic use and the present findings suggest that they may pose an advantage over treatments that target only survivin.


Blood ◽  
2009 ◽  
Vol 113 (23) ◽  
pp. 5927-5937 ◽  
Author(s):  
Encouse B. Golden ◽  
Philip Y. Lam ◽  
Adel Kardosh ◽  
Kevin J. Gaffney ◽  
Enrique Cadenas ◽  
...  

Abstract The anticancer potency of green tea and its individual components is being intensely investigated, and some cancer patients already self-medicate with this “miracle herb” in hopes of augmenting the anticancer outcome of their chemotherapy. Bortezomib (BZM) is a proteasome inhibitor in clinical use for multiple myeloma. Here, we investigated whether the combination of these compounds would yield increased antitumor efficacy in multiple myeloma and glioblastoma cell lines in vitro and in vivo. Unexpectedly, we discovered that various green tea constituents, in particular (-)-epigallocatechin gallate (EGCG) and other polyphenols with 1,2-benzenediol moieties, effectively prevented tumor cell death induced by BZM in vitro and in vivo. This pronounced antagonistic function of EGCG was evident only with boronic acid–based proteasome inhibitors (BZM, MG-262, PS-IX), but not with several non–boronic acid proteasome inhibitors (MG-132, PS-I, nelfinavir). EGCG directly reacted with BZM and blocked its proteasome inhibitory function; as a consequence, BZM could not trigger endoplasmic reticulum stress or caspase-7 activation, and did not induce tumor cell death. Taken together, our results indicate that green tea polyphenols may have the potential to negate the therapeutic efficacy of BZM and suggest that consumption of green tea products may be contraindicated during cancer therapy with BZM.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2644-2644
Author(s):  
Judith Lind ◽  
Sonia Vallet ◽  
Karoline Kollmann ◽  
Osman Aksoy ◽  
Vincent Sunder-Plassmann ◽  
...  

Abstract INTRODUCTION Transcription factors (TFs) are convergence points of signaling cascades that coordinate cell differentiation, proliferation and survival and are commonly deregulated in cancer, including multiple myeloma (MM). They contribute to the initiation of MM and promote tumor cell growth and drug resistance. Both cMyc, a merging point of the PI3K-, and JunB, a merging point of the MEK/MAPK-signaling pathway, play pivotal roles in MM. Exciting novel approaches to inhibit TFs like proteolysis-targeting-chimera (PROTAC) promise to lead to selective tumor cell death with little/no consequence for normal cells. However, redundancy phenomena of transcriptional programs are likely to challenge their efficacy. Here, we report our final results on combined targeting of distinct c-Myc & JunB transcriptional programs for MM therapy. METHODS MM cell lines and patient MM cells were analyzed. Following CRISPR-loss-of-function screens for cMyc & JunB across MM cell lines and correlation analyses in MM patient datasets, the functional relevance of BRD4/c-Myc- and MEK/JunB-induced TF programs was delineated using genomic and chemical approaches in 2D and 3D models of the bone marrow (BM) microenvironment. Specifically, effects of single or combined targeting of cMyc- and JunB-induced TF-programs were analyzed by flow cytometry, western blot, RNAseq, qPCR and luciferase assays. In vitro and ex vivo results were finally verified in a MM xenograft mouse model. RESULTS While CRISPR loss-of-function screens across various MM cell lines confirmed their growth dependency on cMyc and JunB, we did not observe correlative expression levels among these TFs, neither in the publicly available GSE6477 nor in the CoMMpass dataset. In contrast, a significant positive correlation was observed between Brd4 and cMyc, and MEK and JunB expression levels, respectively. The existence of two distinct Brd4/cMyc and MEK/JunB transcriptional programs in MM cells was subsequently supported by a lack of changes in cMyc mRNA/protein levels and resultant transcriptional activity upon JunB knockdown, and vice versa. Likewise, MZ-1, a novel PROTAC which targets Brd4, resulted in the inhibition of BMSC/IL-6- induced cMyc- but not JunB- upregulation. Conversely, neither the MEK inhibitor trametinib nor doxycycline-induced knockdown of BMSC/IL-6- induced JunB upregulation in TetshJunB/MM.1S cells reduced Brd4/c-Myc mRNA/protein levels. Importantly, the activity of MZ-1 and trametinib was predicted by Brd4 and JunB expression levels using mathematical models, respectively. Further, combination of MZ-1 with trametinib or JunB knockdown synergistically inhibited tumor cell proliferation, and induced cell death in a 2D and a dynamic 3D model of the MM-BM milieu. Finally, our in vitro and ex vivo results were confirmed in vivo, utilizing BMSC:TetshJunB/MM.1S vs. BMSC:TetshSCR/MM.1S-carrying NSG mice treated with MZ-1 with/without doxycycline or trametinib. CONCLUSION In summary, our data demonstrate for the first time the existence of non-overlapping cMyc and JunB-regulated TF programs providing a rationale for combined cMyc:JunB targeting treatment strategies in MM. Disclosures Vallet: Pfizer: Honoraria; MSD: Honoraria; Roche Pharmaceuticals: Consultancy. Podar: Celgene: Consultancy, Honoraria; Roche Pharmaceuticals: Research Funding; Janssen Pharmaceuticals: Consultancy, Honoraria; Amgen Inc.: Consultancy, Honoraria.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Guangliang Wang ◽  
Xiaofeng Zhang ◽  
Wei Cheng ◽  
Yanxuan Mo ◽  
Juan Chen ◽  
...  

AbstractChromodomain helicase/ATPase DNA-binding protein 1-like gene (CHD1L) has been characterized to be a driver gene in hepatocellular carcinoma (HCC). However, the intrinsic connections between CHD1L and intestinal dysbacteriosis-related inflammation reaction in HCC progression remain incompletely understood. In this study, a specific correlation between CHD1L and nonmuscle isoform of myosin light chain kinase (nmMLCK/nmMYLK), a newly identified molecule associated NF-κB signaling transduction, was disclosed in HCC. CHD1L promotes nmMYLK expression and prevents lipopolysaccharide (LPS) induced tumor cell death. In vitro experiment demonstrated that overexpressed nmMYLK is essential for CHD1L to maintain HCC cell alive, while knocking down nmMYLK significantly attenuate the oncogenic roles of CHD1L. Mechanism analysis revealed that nmMYLK can prevent Caspase-8 from combining with MyD88, an important linker of TLRs signaling pathway, while, knocking down nmMYLK facilitate the MyD88 combines with Caspase-8 and lead to the proteolytic cascade of Caspase as well as the consequent cell apoptosis. Mechanism analysis showed that CHD1L promotes the nmMYLK expression potentially through upregulating the heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) expression, which can bind to myosin light chain kinase (MYLK) pre-mRNA and lead to the regnant translation of nmMYLK. In summary, this work characterizes a previously unknown role of CHD1L in preventing LPS-induced tumor cell death through activating hnRNP A2/B1-nmMYLK axis. Further inhibition of CHD1L and its downstream signaling could be a novel promising strategy in HCC treatment.


Sign in / Sign up

Export Citation Format

Share Document