scholarly journals P01.10 IFNy secretion of adaptive and innate immune cells as a parameter to display leukaemia derived dendritic cell (DCleu) mediated immune responses in AML

2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A13.1-A13
Author(s):  
LK Klauer ◽  
O Schutti ◽  
S Ugur ◽  
F Doraneh-Gard ◽  
N Rogers ◽  
...  

BackgroundMyeloid leukaemic blasts can be converted into leukaemia derived dendritic cells (DCleu) with blastmodulatory Kit-I and Kit-M, which have the competence to regularly activate T and immunoreactive cells to gain anti-leukaemic activity or rather cytotoxicity. As innate and adaptive immune responses are notably promoted by the cytokine interferon gamma (IFNy), we hypothesised that the IFNy secretion could be a suitable parameter to display DC/DCleu mediated immunologic activity and even anti-leukaemic cytotoxicity.Materials and MethodsDC/DCleu were generated from leukaemic WB with Kit-I (GM-CSF + OK-432) and Kit-M (GM-CSF + PGE1) and used to stimulate T cell enriched immunoreactive cells. Initiated anti-leukaemic cytotoxicity was investigated with a cytotoxicity fluorolysis assay (CTX). Initiated IFNy secretion of innate and adaptive immune cells (T cells, TCD4+ cells, TCD8+ cells, NKCD56+ cells, NKCD161+ cells, CIKCD56+ cells, CIKCD161+ cells and iNKT) was investigated with a cytokine secretion assay (CSA). In some cases IFNy production was additionally evaluated with an intracellular cytokine assay (ICA). Conclusively, the IFNy secretion of immunoreactive cells was correlated with the anti-leukaemic cytotoxicity.ResultsSignificant amounts of DC and DCleu as well as migratory DC and DCleu could be generated with Kit-I and Kit-M without induction of blast proliferation. T cell enriched immunoreactive cells stimulated with DC/DCleu showed an increased anti-leukaemic cytotoxicity and an increased IFNy secretion of T, NK and CIK cells compared to control. Both the CSA and ICA yielded comparable amounts of IFNy positive innate and adaptive immune cells. The correlation between the IFNy secretion of immunoreactive cells and the anti-leukaemic cytotoxicity showed a positive relationship in T cells, TCD4+ cells, TCD8+ cells and NKCD56+ cells.ConclusionsWe found blastmodulatory Kit-I and Kit-M competent to generate DC/DCleu from leukaemic WB. Stimulation of T cell enriched immunoreactive cells with DC/DCleu regularly resulted in an increased anti-leukaemic cytotoxicity and an increased IFNy dependent immunological activity of T, NK and CIK cells compared to control. Moreover the anti-leukaemic cytotoxicity positively correlated with the IFNy secretion in T cells, TCD4+ cells, TCD8+ cells, NKCD56+ cells. We therefore consider the IFNy secretion of innate and adaptive immune cells to be a suitable parameter to assess the efficacy of in vitro and potentially in vivo AML immunotherapy. The CSA in this regard proved to be a convenient and reproducible technique to detect and phenotypically characterise IFNy secreting cells of the innate and adaptive immune system.Disclosure InformationL.K. Klauer: None. O. Schutti: None. S. Ugur: None. F. Doraneh-Gard: None. N. Rogers: None. M. Weinmann: None. D. Krämer: None. A. Rank: None. C. Schmid: None. B. Eiz-Vesper: None. H.M. Schmetzer: None.

2021 ◽  
Author(s):  
Ellie N. Ivanova ◽  
Joseph C. Devlin ◽  
Terkild B. Buus ◽  
Akiko Koide ◽  
Amber Cornelius ◽  
...  

AbstractBoth SARS-CoV-2 infection and vaccination elicit potent immune responses. A number of studies have described immune responses to SARS-CoV-2 infection. However, beyond antibody production, immune responses to COVID-19 vaccines remain largely uncharacterized. Here, we performed multimodal single-cell sequencing on peripheral blood of patients with acute COVID-19 and healthy volunteers before and after receiving the SARS-CoV-2 BNT162b2 mRNA vaccine to compare the immune responses elicited by the virus and by this vaccine. Phenotypic and transcriptional profiling of immune cells, coupled with reconstruction of the B and T cell antigen receptor rearrangement of individual lymphocytes, enabled us to characterize and compare the host responses to the virus and to defined viral antigens. While both infection and vaccination induced robust innate and adaptive immune responses, our analysis revealed significant qualitative differences between the two types of immune challenges. In COVID-19 patients, immune responses were characterized by a highly augmented interferon response which was largely absent in vaccine recipients. Increased interferon signaling likely contributed to the observed dramatic upregulation of cytotoxic genes in the peripheral T cells and innate-like lymphocytes in patients but not in immunized subjects. Analysis of B and T cell receptor repertoires revealed that while the majority of clonal B and T cells in COVID-19 patients were effector cells, in vaccine recipients clonally expanded cells were primarily circulating memory cells. Importantly, the divergence in immune subsets engaged, the transcriptional differences in key immune populations, and the differences in maturation of adaptive immune cells revealed by our analysis have far-ranging implications for immunity to this novel pathogen.


2021 ◽  
pp. 1-18
Author(s):  
Lara Kristina Klauer ◽  
Olga Schutti ◽  
Selda Ugur ◽  
Fatemeh Doraneh-Gard ◽  
Daniel Christoph Amberger ◽  
...  

<b><i>Introduction:</i></b> Myeloid leukaemic blasts can be converted into leukaemia-derived dendritic cells (DC<sub>leu</sub>), characterised by the simultaneous expression of dendritic- and leukaemia-associated antigens, which have the competence to prime and enhance (leukaemia-specific) immune responses with the whole leukaemic antigen repertoire. To display and further specify dendritic cell (DC)- and DC<sub>leu</sub>-mediated immune responses, we analysed the interferon gamma (IFNy) secretion of innate and adaptive immune cells. <b><i>Methods:</i></b> DC/DC<sub>leu</sub> were generated from leukaemic whole blood (WB) with (blast)modulatory Kit-I (granulocyte-macrophage colony-stimulating factor [GM-CSF] + Picibanil [OK-432]) and Kit-M (GM-CSF + prostaglandin E1) and were used to stimulate T cell-enriched immunoreactive cells. Initiated anti-leukaemic cytotoxicity was investigated with a cytotoxicity fluorolysis assay. Initiated IFNy secretion of T, NK, CIK, and iNKT cells was investigated with a cytokine secretion assay (CSA). IFNy positivity was additionally evaluated with an intracellular cytokine assay (ICA). Recent activation of leukaemia-specific cells was verified through addition of leukaemia-associated antigens (LAA; WT-1 and Prame) <b><i>Results:</i></b> We found Kit-I and Kit-M competent to generate mature DC and DC<sub>leu</sub> from leukaemic WB without induction of blast proliferation. Stimulation of immunoreactive cells with DC/DC<sub>leu</sub> regularly resulted in an increased anti-leukaemic cytotoxicity and increased IFNy secretion of T, NK, and CIK cells, pointing to the significant role of DC/DC<sub>leu</sub> in leukaemia-specific alongside anti-leukaemic reactions. Interestingly, an addition of LAA did not further increase IFNy secretion, suggesting an efficient activation of leukaemia-specific cells. Here, both the CSA and ICA yielded comparable frequencies of IFNy-positive cells. Remarkably, the anti-leukaemic cytotoxicity positively correlated with the IFNy secretion in T<sup>CD3+</sup>, T<sup>CD4+</sup>, T<sup>CD8+</sup>, and NK<sup>CD56+</sup> cells. <b><i>Conclusion:</i></b> Ultimately, the IFNy secretion of innate and adaptive immune cells appeared to be a suitable parameter to assess and monitor the efficacy of in vitro and potentially in vivo acute myeloid leukaemia immunotherapy. The CSA in this regard proved to be a convenient and reproducible technique to detect and phenotypically characterise IFNy-secreting cells. In respect to our studies on DC-based immunomodulation, we were able to display the potential of DC/DC<sub>leu</sub> to induce or improve leukaemia-specific and anti-leukaemic activity.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. The importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented in mice. Recently, some groups have investigated the survival of effector/memory T cells in the human BM. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown.Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV- and CMV+ groups.Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8+ T cells was reduced. In addition, the frequency of B cells and CD4+ T cells positively correlated with BMI in the BM of CMV- persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons.Conclusion. Our work suggests that, in addition to aging and CMV, obesity may represent an additional risk factor for immunosenescence in adaptive immune cells. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. Recently, the importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown. Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV - and CMV + groups. Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8 + T cells was reduced. In addition, the frequency of B cells and CD4 + T cells positively correlated with BMI in the BM of CMV - persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons. Conclusion. Our work suggests that obesity may represent an independent risk factor supporting immunosenescence, in addition to aging and CMV. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


2019 ◽  
Vol 26 (2) ◽  
pp. 229-241
Author(s):  
Deepa Rana Jamwal ◽  
Raji V Marati ◽  
Christy A Harrison ◽  
Monica T Midura-Kiela ◽  
Vanessa R Figliuolo Paz ◽  
...  

Abstract Background Inflammatory bowel disease (IBD) is a multifactorial disorder, with the innate and adaptive immune cells contributing to disease initiation and progression. However, the intricate cross-talk between immune cell lineages remains incompletely understood. The role of CD8+ T cells in IBD pathogenesis has been understudied, largely due to the lack of appropriate models. Methods We previously reported spontaneous colitis in mice with impaired TGFβ signaling due to dendritic cell–specific knockout of TGFbR2 (TGFβR2ΔDC). Here, we demonstrate that crossing TGFβR2ΔDC mice with a Rag1-/- background eliminates all symptoms of colitis and that adoptive transfer of unfractionated CD3+ splenocytes is sufficient to induce progressive colitis in Rag1-/-TGFβR2ΔDC mice. Results Both CD4+ and CD8+ T cells are required for the induction of colitis accompanied by activation of both T-cell lineages and DCs, increased expression of mucosal IFNγ, TNFα, IL6, IL1β, and IL12, and decreased frequencies of CD4+FoxP3+ regulatory T cells. Development of colitis required CD40L expression in CD4+ T cells, and the disease was partially ameliorated by IFNγ neutralization. Conclusions This novel model provides an important tool for studying IBD pathogenesis, in particular the complex interactions among innate and adaptive immune cells in a controlled fashion, and represents a valuable tool for preclinical evaluation of novel therapeutics.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Tom Li Stephen ◽  
Laura Groneck ◽  
Wiltrud Maria Kalka-Moll

The detection of pathogen-derived molecules as foreign particles by adaptive immune cells triggers T and B lymphocytes to mount protective cellular and humoral responses, respectively. Recent immunological advances elucidated that proteins and some lipids are the principle biological molecules that induce protective T cell responses during microbial infections. Polysaccharides are important components of microbial pathogens and many vaccines. However, research concerning the activation of the adaptive immune system by polysaccharides gained interest only recently. Traditionally, polysaccharides were considered to be T cell-independent antigens that did not directly activate T cells or induce protective immune responses. Here, we review several recent advances in “carbohydrate immunobiology”. A group of bacterial polysaccharides that are known as “zwitterionic polysaccharides (ZPSs)” were recently identified as potent immune modulators. The immunomodulatory effect of ZPSs required antigen processing and presentation by antigen presenting cells, the activation of CD4 T cells and subpopulations of CD8 T cells and the modulation of host cytokine responses. In this review, we also discuss the potential use of these unique immunomodulatory ZPSs in new vaccination strategies against chronic inflammatory conditions, autoimmunity, infectious diseases, allergies and asthmatic conditions.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. The importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented in mice. Recently, some groups have investigated the survival of effector/memory T cells in the human BM. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown.Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV- and CMV+ groups.Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8+ T cells was reduced. In addition, the frequency of B cells and CD4+ T cells positively correlated with BMI in the BM of CMV- persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons.Conclusion. Our work suggests that, in addition to aging and CMV, obesity may represent an additional risk factor for immunosenescence in adaptive immune cells. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yang Li ◽  
Gen Li ◽  
Jian Zhang ◽  
Xiaoli Wu ◽  
Xi Chen

γδ T cells are the unique T cell subgroup with their T cell receptors composed of γ chain and δ chain. Unlike αβ T cells, γδ T cells are non-MHC-restricted in recognizing tumor antigens, and therefore defined as innate immune cells. Activated γδ T cells can promote the anti-tumor function of adaptive immune cells. They are considered as a bridge between adaptive immunity and innate immunity. However, several other studies have shown that γδ T cells can also promote tumor progression by inhibiting anti-tumor response. Therefore, γδ T cells may have both anti-tumor and tumor-promoting effects. In order to clarify this contradiction, in this review, we summarized the functions of the main subsets of human γδ T cells in how they exhibit their respective anti-tumor or pro-tumor effects in cancer. Then, we reviewed recent γδ T cell-based anti-tumor immunotherapy. Finally, we summarized the existing problems and prospect of this immunotherapy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2312-2312
Author(s):  
Hendrik Ziegler ◽  
Jan Haarer ◽  
Marco Sterk ◽  
Hans-Georg Rammensee ◽  
Rupert Handgretinger ◽  
...  

Abstract Abstract 2312 Human peripheral CD34+ γδ T cells can transdifferentiate into αβ T cells Haploidentical transplantation of peripheral mobilized T-cell depleted stem cells is associated with a delayed immune recovery resulting in severe and often lethal infectious complications after transplantation. For T-cell depletion, either positive selection of CD34+ stem cells as well as negative depletion of CD3+ T lymphocytes is used. However, delayed reconstitution of the adaptive T-cell immune system is seen with both approaches. Since adaptive immune cells are the progeny of haematopoietic precursors, one reason for the delayed immune reconstitution might be the depletion of a progenitor for the adaptive immune system with CD34+ positive selection and CD3 negative depletion. Therefore, we hypothesized the existence of a peripheral CD34+ CD3+ lymphoid progenitor cell. And indeed, we could identify a subset of peripheral circulating cells with a weaker expression of the CD34 antigen compared to CD34+ myeloid progenitor cells which coexpressed CD3, γδ TCR(Vδ1), and CD4lo and additionally express the hematopoietic progenitor markers CD105, CD117, CD135 and CXCR4. In an inflammatory environment, this CD34+ subset can transdifferentiate in vitro into αβ T cells. Upon its extrathymic route of differentiation, that resembles thymic development, CD34+ Vd1+ CD4+ cells increase CD4+ coreceptor expression, develop Vδ1+ CD4+CD8+ double positive cells, show heterodimeric CD8αβ, transcribe RAG and preTα and express a particular Vβ chain on their surface. Simultaneously inflammation confers controlled initiation of rearrangement in the TCRα locus. Transdifferentiation of Vδ1+ T cells at the clonal and bulk-culture level into functional CD4+ or CD8+ αβ T cells upon inflammatory stimuli, is in line with the findings that HSCs participate directly in the primary response to both acute and chronic infections. The identification of CD34+ Vδ1+ T-cells as precursor for adaptive immune cells under inflammatory conditions is of utmost clinical importance, since (i) this subset is selectively lost with the clinically used CliniMACS method of CD34 positive selection, which preferentially enriches for stem cells with a stronger expression of the CD34 antigen due to the binding of more magnetic particles and better retention of the CD34++ cells in the magnetic field and (ii) this subset is also lost using CD3 negative depletion due the coexpression of the CD3 antigen on the CD34+ Vd1+ cells. Our results might be an explanation why a more rapid T-cell recovery is seen after the transplantation of peripheral stem cells depleted of TcRαβ T-cells, which retains the CD34+ Vδ1+ cells in the graft. Furthermore, the assignment of this fundamental role for γδ T cells as a reservoir of an as-yet unappreciated lineage-committed extrathymic αβ T-lymphoid progenitor opens a new vista in immunology and necessitates reevaluation of adaptive immune responses in infection, autoimmunity and cancer. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document