239 Decr2 loss promotes resistance of tumor cells to immunotherapy by affecting CD8+ T cell-regulated tumor ferroptosis

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A257-A257
Author(s):  
Thomas Gajewski ◽  
Emily Higgs ◽  
Shuyin Li ◽  
Blake Flood ◽  
Ken Hatogai

BackgroundCheckpoint blockade therapies have transformed the landscape of cancer care. Durable clinical responses have been observed in a subset of patients. However, many patients do not respond, and understanding the mechanisms that determine tumor resistant to checkpoint blockade drugs could potentially benefit more patients. Ferroptosis is a relatively newly described form of regulated cell death distinct from apoptosis and necroptosis. Recently, T cell-promoted tumor ferroptosis was shown to be an anti-tumor mechanism and targeting this pathway could be a potential therapeutic approach.MethodsTo identify genes critical to immunotherapy resistance, B16.SIY cells were transduced with a genome-scale gRNA lentivirus to generate loss of function mutants. In vitro-primed CD8+ T cells isolated from 2C/Rag2–/– TCR transgenic mice specific for the SIY antigen were co-cultured with transduced B16.SIY tumor cells. Resistant mutants were identified by sequencing the gRNAs of survival clones. The gene encoding Decr2, a peroxisomal 2,4-dienoyl-CoA reductase, was identified. To investigate the role of Decr2 in tumor growth and immune responses in vivo, the Decr2 knock-down or Decr2 overexpressed tumors were transplanted into B6 mice and the mice were subsequently treated with anti-PD-L1 antibody. The tumor microenvironments were analyzed by flow cytometry. To understand the resistance mechanism of Decr2 knock-down tumors, RNA-seq was performed and analyzed. The CD8+ T cell mediated tumor ferroptosis in vitro and in vivo was analyzed for lipid reactive oxygen species.ResultsDecr2 mutants were relatively resistant to CD8+ T cell killing in vitro. Consistent with this resistance to CD8+ T cell killing, Decr2 knock-down tumors showed minimal response to anti-PDL1 therapy in vivo. RNA-seq analysis of Decr2 knock-down B16.SIY tumors revealed upregulation of ferroptosis-related genes, including slc7a11. Further mechanistic studies showed that Decr2 knock-down tumors displayed defects in ferroptosis in vitro and in vivo.ConclusionsDecr2-deficient tumors were relatively resistant to CD8+ T cell killing in vitro and anti-PD-L1 immunotherapy in vivo by modulating CD8+ T cell-induced ferroptosis.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 8044-8044
Author(s):  
Marie-Agnès Doucey ◽  
Blandine Pouleau ◽  
Carole Estoppey ◽  
Cian Stutz ◽  
Amelie Croset ◽  
...  

8044 Background: ISB 1342 is a bispecific antibody heterodimer based on the Ichnos proprietary Bispecific Engagement by Antibodies based on T cell receptor (BEAT) platform. ISB 1342 is a first-in-class CD38 T cell engager under investigation in subjects with relapsed multiple myeloma refractory to proteasome inhibitors (PIs), immunomodulators (IMiDs) and daratumumab (study ISB 1342-101). Methods: ISB 1342 was engineered with a single chain variable fragment (scFv) arm that specifically recognizes a cluster of differentiation (CD)3-epsilon (CD3ε) and a fragment antigen binding (Fab) arm which specifically recognizes CD38 and does not compete with daratumumab. By co-engaging CD3ε on T cells and CD38 on tumor cells, ISB 1342 redirects T cells to kill CD38-expressing tumor cells. This mechanism of action is differentiated from existing monospecific CD38 targeting therapies and was designed to overcome resistance to daratumumab in multiple myeloma. Results: In vitro, ISB 1342 killed a large range of CD38-expressing tumor cell lines (EC50:12 to 90 pM) with 8 to 239-fold superior efficacy than daratumumab. ISB 1342 was also able to efficiently kill CD38 low-intermediate-expressing tumor cells that were poorly killed by daratumumab. ISB 1342 retained the potency to kill CD38 low-intermediate-expressing tumor cells when used in sequential or concomitant combination with daratumumab. In addition, the presence of soluble CD38 or glucocorticoid did not impact ISB 1342 killing potency. ISB 1342 was constructed with a double LALA mutation that dampens the binding to Fcγ receptors and C1q. Consistently, ISB 1342 showed only residual Fc-mediated effector functions and its mechanism of tumor cell killing critically relies on the engagement and the activation of T lymphocytes. ISB 1342 showed a favorable on target specificity profile in vitro and was unable to activate T cells in the absence of CD38 positive target cells. Further, ISB 1342-induced tumor cell killing was not associated with a detectable T cell fratricide in vitro. Finally, the potency of ISB 1342 was assessed in vivo in a therapeutic model of a subcutaneously established Daudi tumor co-xenografted with human PBMCs. In marked contrast to daratumumab, which induced only a partial tumor control, ISB 1342 induced complete tumor eradication when injected intravenously weekly at 0.5 mg/kg. As anticipated, the ISB 1342 control molecule (ISB 1342_13DU) made of an irrelevant CD38 binder failed to control tumor growth. The release of the Granzyme A and B, TNF-alpha and CXCL-10 in the tumor micro-environment one week post-treatment was strongly and significantly increased by ISB 1342 but not by daratumumab and ISB 1342_13DU; this represents a correlate of anti-tumor immunity associated with ISB 1342 efficacy in vivo. Conclusions: Hence the higher potency of ISB 1342 relative to daratumumab supports the ongoing clinical development in multiple myeloma patients.


2020 ◽  
Vol 8 (2) ◽  
pp. e001037
Author(s):  
Ruiyan Wu ◽  
Caiqin Wang ◽  
Zhiming Li ◽  
Jian Xiao ◽  
Chunyan Li ◽  
...  

BackgroundImmune checkpoint inhibitors (ICIs) induce better tumor regression in melanoma with programmed cell death 1 ligand 1 (PD-L1) high expression, but there has been an upsurge of failed responses. In this study, we aimed to explore the additional mechanisms possibly accounting for ICIs resistance and interventional strategies to overcome the resistance in melanoma with PD-L1 high expression.MethodsMelanoma xenografts and cytotoxicity assays were used to investigate function of SOX2 in regulating antitumor immunity. The activity of the janus kinase-signal transducer and activator of transcriptions (JAK-STAT) pathway was investigated by western blots, quantitative PCR and luciferase assay. Epigenetic compounds library screen was employed to identify inhibitors that could decrease SOX2 level. The effect of histone deacetylase inhibitor SAHA in antitumor immunity alone or in combination with immunotherapy was also determined in vitro and in vivo. Prognostic impact of SOX2 was analyzed using transcriptional profiles and clinical data download from the Gene Expression Omnibus and The Cancer Genome Atlas repository.ResultsWe uncovered a role of SOX2 in attenuating the sensitivity of melanoma cells to CD8+ T-cell killing. Mechanistically, SOX2 inhibited phosphatases suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase non-receptor type 1 (PTPN1) transcription, induced duration activation of the JAK-STAT pathway and thereby overexpression of interferon stimulated genes resistance signature (ISG.RS). By targeting the SOX2-JAK-STAT signaling, SAHA promoted the antitumor efficacy of IFNγ or anti-PD-1 in vitro and in vivo. Moreover, SOX2 was an independent prognostic factor for poor survival and resistant to anti-PD-1 therapy in melanoma with PD-L1 high expression.ConclusionsOur data unveiled an additional function of SOX2 causing immune evasion of CD8+ T-cell killing through alleviating the JAK-STAT pathway and ISG.RS expression. We also provided a rationale to explore a novel combination of ICIs with SAHA clinically, especially in melanoma with PD-L1 and SOX2 high expression.


BIO-PROTOCOL ◽  
2016 ◽  
Vol 6 (12) ◽  
Author(s):  
Nada Chaoul ◽  
Catherine Fayolle ◽  
Claude Leclerc
Keyword(s):  
T Cell ◽  

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mauro Di Pilato ◽  
Miguel Palomino-Segura ◽  
Ernesto Mejías-Pérez ◽  
Carmen E. Gómez ◽  
Andrea Rubio-Ponce ◽  
...  

AbstractNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii472-iii472
Author(s):  
Mubeen Mosaheb ◽  
Daniel Landi ◽  
Elena Dobrikova ◽  
Michael Brown ◽  
Yuanfan Yang ◽  
...  

Abstract BACKGROUND H3 K27M-mutant diffuse midline glioma (DMG) is invariably lethal. Viruses naturally engage innate immunity, induce antigen presentation, and mediate CD8 T cell priming against foreign antigens. Polioviruses, in particular, are uniquely tropic for dendritic cells (DC) and potently activate DC, inducing Th1-dominant cytokine profiles, CD8 T cell immunity, and enhanced epitope presentation. Thus, poliovirus is ideally suited for vectored delivery of signature tumor neoantigens, e.g. the H3 K27M feature of DMG. However, poliovirus vector design is inherently limited by genetic instability and the underlying neuropathogenicity of poliovirus. METHODS We created a genetically stable, polio:rhinovirus chimera vector devoid of neuropathogenicity and modified for stable expression of the HLA-A2 restricted H3.3 K27M antigen (RIPO (H3.3)). RESULTS RIPO(H3.3) infects, activates, and induces H3.3K27M antigen presentation in DCs in vitro. Given intramuscularly in vivo, RIPO(H3.3) recruits and activates DCs with Th1-dominant cytokine profiles, efficiently primes H3.3K27M-specific CD8 T cells, induces antigen-specific CD8 T cell migration to the tumor site, delays tumor growth, and enhances survival in murine tumor models. CONCLUSION This novel approach leverages the unique ability of polioviruses to activate DCs while simultaneously introducing the H3.3 K27M antigen. In this way, DCs are activated optimally in situ, while being simultaneously infected to express/present tumor antigen. RIPO(H3.3), given by intramuscular injection, will be evaluated in a clinical trial for children with H3 K27M-mutant diffuse midline glioma.


2000 ◽  
Vol 191 (3) ◽  
pp. 541-550 ◽  
Author(s):  
Zhengbin Lu ◽  
Lingxian Yuan ◽  
Xianzheng Zhou ◽  
Eduardo Sotomayor ◽  
Hyam I. Levitsky ◽  
...  

In many cases, induction of CD8+ CTL responses requires CD4+ T cell help. Recently, it has been shown that a dominant pathway of CD4+ help is via antigen-presenting cell (APC) activation through engagement of CD40 by CD40 ligand on CD4+ T cells. To further study this three cell interaction, we established an in vitro system using dendritic cells (DCs) as APCs and influenza hemagglutinin (HA) class I and II peptide–specific T cell antigen receptor transgenic T cells as cytotoxic T lymphocyte precursors and CD4+ T helper cells, respectively. We found that CD4+ T cells can provide potent help for DCs to activate CD8+ T cells when antigen is provided in the form of either cell lysate, recombinant protein, or synthetic peptides. Surprisingly, this help is completely independent of CD40. Moreover, CD40-independent CD4+ help can be documented in vivo. Finally, we show that CD40-independent T cell help is delivered through both sensitization of DCs and direct CD4+–CD8+ T cell communication via lymphokines. Therefore, we conclude that CD4+ help comprises at least three components: CD40-dependent DC sensitization, CD40-independent DC sensitization, and direct lymphokine-dependent CD4+–CD8+ T cell communication.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


2014 ◽  
Vol 211 (13) ◽  
pp. 2519-2535 ◽  
Author(s):  
James M. Kennedy ◽  
Nassima Fodil ◽  
Sabrina Torre ◽  
Silayuv E. Bongfen ◽  
Jean-Frédéric Olivier ◽  
...  

We used a genome-wide screen in mutagenized mice to identify genes which inactivation protects against lethal neuroinflammation during experimental cerebral malaria (ECM). We identified an ECM-protective mutation in coiled-coil domain containing protein 88b (Ccdc88b), a poorly annotated gene that is found expressed specifically in spleen, bone marrow, lymph nodes, and thymus. The CCDC88B protein is abundantly expressed in immune cells, including both CD4+ and CD8+ T lymphocytes, and in myeloid cells, and loss of CCDC88B protein expression has pleiotropic effects on T lymphocyte functions, including impaired maturation in vivo, significantly reduced activation, reduced cell division as well as impaired cytokine production (IFN-γ and TNF) in response to T cell receptor engagement, or to nonspecific stimuli in vitro, and during the course of P. berghei infection in vivo. This identifies CCDC88B as a novel and important regulator of T cell function. The human CCDC88B gene maps to the 11q13 locus that is associated with susceptibility to several inflammatory and auto-immune disorders. Our findings strongly suggest that CCDC88B is the morbid gene underlying the pleiotropic effect of the 11q13 locus on inflammation.


1987 ◽  
Vol 105 (1) ◽  
pp. 553-559 ◽  
Author(s):  
E Roos ◽  
F F Roossien

We studied the interaction of MB6A lymphoma and TAM2D2 T cell hybridoma cells with hepatocyte cultures as an in vitro model for in vivo liver invasion by these tumor cells. A monoclonal antibody against leukocyte function-associated antigen-1 (LFA-1) inhibited adhesion of the tumor cells to the surface of hepatocytes and consequently strongly reduced invasion. This effect was specific since control antibodies, directed against Thy.1 and against T200, of the same isotype, similar affinity, and comparable binding to these cells, did not inhibit adhesion. This suggests that LFA-1 is involved in the formation of liver metastases by lymphoma cells. TAM2D2 T cell hybridoma cells were agglutinated by anti-LFA-1, but not by control antibodies. Reduction of adhesion was not due to this agglutination since monovalent Fab fragments inhibited adhesion as well, inhibition was also seen under conditions where agglutination was minimal, and anti-LFA-1 similarly affected adhesion of MB6A lymphoma cells that were not agglutinated. The two cell types differed in LFA-1 surface density. TAM2D2 cells exhibited 400,000 surface LFA-1 molecules, 10 times more than MB6A cells. Nevertheless, the level of adhesion and the extent of inhibition by the anti-LFA-1 antibody were only slightly larger for the TAM2D2 cells.


Sign in / Sign up

Export Citation Format

Share Document