298 Final analysis of the phase 1 trial of NY-ESO-1–specific T-cell receptor (TCR) T-cell therapy (letetresgene autoleucel; GSK3377794) in patients with advanced synovial sarcoma (SS)

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A325-A325
Author(s):  
Sandra D’Angelo ◽  
George Demetri ◽  
Brian Van Tine ◽  
Mihaela Druta ◽  
John Glod ◽  
...  

BackgroundNY-ESO-1–specific T cells (letetresgene autoleucel [lete-cel]; GSK3377794) are autologous T cells transduced with a self-inactivating lentiviral vector to express an engineered NY-ESO-1–specific TCR that recognizes HLA-A*02–presented peptides derived from NY-ESO-1, a cancer/testis antigen expressed in 70%–80% of SS. NCT01343043 was a Phase I, open-label trial assessing safety, efficacy, and pharmacokinetics of lete-cel in patients with SS; activity was evaluated after different lymphodepletion conditioning regimens and in patients with differing levels of NY-ESO-1 expression.MethodsPatients with unresectable, metastatic, or recurrent SS who were intolerant/nonresponsive to standard first-line chemotherapy enrolled in 4 cohorts based on NY-ESO-1 tumor expression were lymphodepleted and received lete-cel infusion (table 1). Primary endpoint was investigator-assessed overall response rate (ORR) per RECIST v1.1; secondary endpoints included duration of response (DoR), progression-free survival (PFS), overall survival (OS), and safety. Transduced cell persistence was measured by qPCR of transgene vector copies in DNA extracted from PBMCs. Study was not designed/powered to compare cohorts.ResultsOverall, 50 patients enrolled; 45 received lete-cel infusion (modified intent-to-treat population). Demographics were similar between cohorts. Median time in study was 480/278/605/643 days in Cohorts 1/2/3/4, respectively. At study completion, ORR ranged from 20%–50% between cohorts, with 1 complete (lasting 34 weeks) and 14 partial responses (table 1). In Cohorts 1/2/3/4, respectively, median DoR was 31.0/8.6/32.1/16.4 weeks; median PFS was 15.4/13.1/8.6/22.4 weeks (table 1). As of 27Jan2020, median OS for Cohorts 1/2/3 was 24.3/9.9/19.9 months; Cohort 4 median OS was immature (table 1). Across cohorts, Grade ≥3 adverse events (AEs) in ≥40% of patients were mostly hematologic in nature; Grade ≥3 serious AEs (SAEs) were most frequently febrile neutropenia, dyspnea, and neutropenia (table 2). AEs of special interest included cytokine release syndrome in 44% of patients (n=20; maximum Grade 1/2/3/4 in 9/7/3/1 patients, respectively; 5 patients had SAEs [Grade ≥3 in 2 patients]; all AEs/SAEs resolved); Guillain-Barré syndrome in 2 patients (Grade 3 SAEs; resolved with sequalae); and multilineage cytopenias in 96% of patients (n=43; maximum Grade 5 in 1 patient, Grade 3/4 in others). Peak persistence of transduced cells was generally higher in responders vs non-responders (table 1); time to peak persistence was similar between these groups (median 8 days). No patients tested positive for replication-competent lentivirus.Abstract 298 Table 1NY-ESO-1 expression and lymphodepletion regimen in Cohorts 1–4, efficacy, and peak persistence in responders and nonresponders; mITT populationAbstract 298 Table 2Number of patients with Grade ≥3 AEs in the mITT population*ConclusionsIn patients with advanced SS who need effective treatment, lete-cel had a manageable safety profile; responses occurred in all cohorts, but patients with high NY-ESO-1 expression and more intensive lymphodepletion regimen received greatest benefit.AcknowledgementsThis study (208466) was funded by GlaxoSmithKline. Medical writing assistance was provided by Gemma Corr, DPhil, and Tiffany Brake, PhD, of Fishawack Indicia, UK, and funded by GlaxoSmithKline. We thank Ran Ji for contributions to statistical analysis.Trial RegistrationClinicaltrials. gov NCT01343043Ethics ApprovalThis study was approved by the appropriate institutional review boards and independent ethics committees.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4016-4016 ◽  
Author(s):  
Samer K. Khaled ◽  
Suzette Blanchard ◽  
Xiuli Wang ◽  
Jamie Wagner ◽  
Araceli Naranjo ◽  
...  

Abstract Introduction: Treatment of adults with relapsed/refractory (R/R) B-ALL using CD19-targeted chimeric antigen receptor (CAR) T cells has achieved remarkable remission rates, both in pediatric and adult populations. There are multiple CAR constructs and T cell manufacturing platforms in use, and both aspects of the therapy may impact efficacy and toxicity. Park et al. report that 83% of adult patients (pts) achieve complete response (CR) to their CD19 CAR T cells with a CD28 costimulatory domain (NEJM; 3785: 449), using an unselected peripheral blood (PBMC) manufacturing platform. Unfortunately, therapy-associated toxicities in adult and pediatric ALL pts are problematic, with grade 3/4 cytokine release syndrome (CRS) ranging from 26-49 % and neurotoxicity 18-42%. Here we report preliminary data from one arm of a phase 1 clinical trial (NCT02146924) in adult pts with R/R B-ALL testing a memory-enriched T cell starting population engineered to express a CD19-specific, CD28-costimulatory CAR (CD19:28z-CAR). All pts achieved CR or CRi with a low incidence of severe cytokine release syndrome (CRS) and neurotoxicity. Unique to this study is our Tn/mem-enriched manufacturing platform, a naïve/memory T cell-enriched T cell product that is lentivirally transduced to express our CD19:28z-CAR. The manufacturing process starts with patient PBMC, depletes the CD14+ monocytes and CD25+ Tregs, and selects for CD62L+ T cells. The resultant T cell population for CAR transduction includes both the central memory and stem cell memory populations along with naïve T cells. Preclinical studies in mice had suggested that using a more uniform T cell product with a less-differentiated T cell phenotype improved antitumor activity. This Tn/mem manufacturing platform is the same as our Tcm-derived platform (Blood;127:2980) except that CD45RA depletion was omitted. Patients and Methods: This phase I study used the activity constrained for toxicity (ACT) design, an extension of the toxicity equivalence range (TEQR) design of Blanchard and Longmate (Contemp Clin Trials; 32:114), that dose escalates based on lack of activity, while constraining the dose for toxicity. The primary objectives of this study were to test the safety and activity of Tn/mem-enriched CD19:28z CAR T cells, and to determine the phase 2 recommended dose. The primary endpoints were toxicity and disease response. Sixteen pts were consented and received a lymphodepleting regimen (LDR) of 1.5-3 gm/m2 cyclophosphamide over 2-3 days and 25-30 mg/m2 fludarabine for 3 days. Three pts received LDR, but did not receive T cells due to infection or lack of CD19+ disease. Patients received a flat dose of 200 million (M) CD19:28z-CAR T cells: 11 autologous and 2 allogeneic donor products. Of the 13 that received 200 M CAR+ T cells, 2 pts were deemed ineligible for dose escalation / disease response evaluation, as 1 received <80% of the prescribed dose (100 M) and the other had CD19-negative extramedullary disease. The median age of the 13 CAR T cell treated pts was 33 years (24-72). All pts had active bone marrow (BM) disease at the time of LDR: 8 pts (62%) had high disease burden (15-91% BM blasts) and 5 had low disease burden (</= 5% BM blasts). Patients were heavily pretreated, with a median of 5 (2-6), prior regimens. Six pts received prior allogeneic transplant (HSCT), 9 had prior blinatumomab, and 1 had prior CD19 CAR T cells. Results: Toxicity: Table 1 describes the major toxicities of the 13 CAR-treated pts, stratified based on disease burden. There were no DLTs, and T-cell therapy attributed (>/=possibly) toxicities were typically mild and reversible. Eight pts had grade 2 CRS, and 2 had grade 3 CRS. Three pts had grade 2 neurotoxicity and 2 had grade 3. Response: Eleven pts were evaluable for response, with best response of 4 CRs (MRD- by flow) and 7 CRi (6 MRD-, 1 not tested). Median response duration at last contact or HSCT start was 81 days (39-286); 8 pts proceeded to HSCT (in CR or CRi) at a median of 69 days post-CAR infusion (39-103). Conclusions: Our ongoing phase 1 trial demonstrates a 100% response rate to Tn/mem-enriched CD19:28z-CAR T cell therapy in adults with relapsed/refractory (R/R) B-ALL. Although the numbers are small, the unanimous response, combined with a tolerable and reversible toxicity profile in pts with both low and high disease burden is remarkable and suggests promise for this Tn/mem manufacturing platform for CD19 and other CAR targets. Disclosures Khaled: Juno: Other: Travel Funding; Daiichi: Consultancy; Alexion: Consultancy, Speakers Bureau. Wang:Mustang Therapeutics: Other: Licensing Agreement, Patents & Royalties, Research Funding. Brown:Mustang Therapeutics: Consultancy, Other: Licensing Agreement, Patents & Royalties, Research Funding. Forman:Mustang Therapeutics: Other: Licensing Agreement, Patents & Royalties, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 955-955 ◽  
Author(s):  
Wan-Hong Zhao ◽  
Jie Liu ◽  
Bai-Yan Wang ◽  
Yin-Xia Chen ◽  
Xing-Mei Cao ◽  
...  

Abstract LCAR-B38M is a bispecific chimeric antigen receptor T cell (CAR T) therapy directed against B-cell maturation antigen (BCMA). The bi-epitope BCMA binding moieties confer high avidity binding and distinguish LCAR-B38M from other BCMA CAR constructs. Preliminary results of LCAR-B38M in patients (pts) with relapsed/refractory (R/R) multiple myeloma (MM) showed encouraging efficacy and manageable safety (Fan et al.JCO 2017;35:18_suppl LBA3001). Here we present updated safety and efficacy results of the trial. LEGEND-2 (NCT03090659) is an ongoing phase 1, single-arm, open-label multicenter study evaluating LCAR-B38M in pts (18-80 years) with R/R MM. Lymphodepletion was performed using 3 doses of cyclophosphamide 300 mg/m2 on days -5, -4, and -3. Five days after lymphodepletion, LCAR-B38M CAR T cells (median CAR+ cell dose = 0.5x106 cells/kg, [range, 0.07-2x106]) were given in 3 infusions (20, 30, and 50% of total dose). The primary objective is to evaluate the safety of LCAR-B38M CAR T cells; the secondary objective is to evaluate the anti-myeloma response of the treatment. Adverse events (AEs) were graded using the Common Terminology Criteria for AE, v.4.03, and cytokine release syndrome (CRS) was assessed according to Lee et al. (Blood 2014;124:188-95). Response was evaluated using International Myeloma Working Group criteria. This analysis presents data from a single institution. As of June 25, 2018, 57 pts have been infused with LCAR-B38M CAR T cells. The median age was 54 years (range, 27-72), median number of prior therapies was 3 (range, 1-9), and 74% of pts had stage III disease by Durie-Salmon staging. The median duration of follow-up for all pts was 12 months (range, 0.7-25). AEs were reported by all pts; most common were pyrexia (91%), CRS (90%), thrombocytopenia (49%), and leukopenia (47%). Grade ≥3 AEs were reported by 65% of pts; most common were leukopenia (30%), thrombocytopenia (23%), and increased aspartate aminotransferase (21%). CRS was mostly grade 1 (47%) and 2 (35%); 4 pts (7%) had grade 3 cases. Liver function abnormalities were the most common signs of end organ injury among pts with CRS. The median time to onset of CRS was 9 days (range, 1-19). All but 1 CRS events resolved, with a median duration of 9 days (range, 3-57). No clear relationship was demonstrated between dose and CRS; there may be some effect at higher doses, but conclusions are limited by the small number of pts in the grade 3 CRS group (n=4; Figure 1A). Neurotoxicity was observed in 1 pt who had grade 1 aphasia, agitation, and seizure-like activity. The overall response rate (partial response [PR] or better) was 88% (95% confidence interval [CI], 76-95). Complete response (CR) was achieved by 42 pts (74%; 95% CI, 60-85), very good partial response was achieved by 2 pts (4%; 95% CI, 0.4-12), and PR was achieved by 6 pts (11%; 95% CI, 4-22; Figure 1B). Among pts with CR, 39/42 were minimal residual disease (MRD) negative by 8-color flow cytometry. The median time to initial response was 1 month (range, 0.4-4). No clear relationship between LCAR-B38M CAR T cell dose and response was observed (Figure 1C). BCMA expression did not correlate with clinical response. The median duration of response (DOR) was 16 months (95% CI, 12-not reached [NR]). The median DOR for pts who achieved a CR was 22 months (95% CI, 14-NR). At data cutoff, 18 pts (36%) who achieved PR or better progressed. The median progression-free survival (PFS) for all treated pts was 15 months (95% CI, 11-NR); median PFS for pts who achieved CR was 24 months (95% CI, 15-NR). The median overall survival was not reached. Overall, 17 pts died during the study and follow-up period; causes of death were progressive disease (PD; n=14), suicide after PD (n=1), esophagitis (n=1), and pulmonary embolism and acute coronary syndrome (n=1). Peak levels of LCAR-B38M (≥1x104 copies/µg genomic DNA) were observed in a majority of pts with blood samples for analysis (n=32). LCAR-B38M CAR T cells were not detectable in peripheral blood in 71% of pts at 4 months; 5 pts showed CAR T cell persistence up to 10 months. This ongoing first-in-human study has provided initial proof-of-concept that bispecific LCAR-B38M CAR T cells may be a highly effective therapy for R/R MM. LCAR-B38M CAR T cell therapy displayed a manageable safety profile consistent with its known mechanism of action and demonstrated deep and durable responses in pts with R/R MM. A phase 1/2 study of LCAR-B38M in R/R MM has been initiated in the US (NCT03548207). Disclosures Zhuang: Nanjing Legend Biotech: Employment. Fan:Nanjing Legend Biotech: Employment.


Blood ◽  
2021 ◽  
Author(s):  
Bijal D Shah ◽  
Michael R. Bishop ◽  
Olalekan O Oluwole ◽  
Aaron C Logan ◽  
Maria R. Baer ◽  
...  

ZUMA-3 is a phase 1/2 study evaluating KTE-X19, an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, in adult relapsed/refractory (R/R) B-ALL. We report the phase 1 results. Following fludarabine/cyclophosphamide lymphodepletion, patients received a single infusion of KTE-X19 at 2, 1, or 0.5×106 cells/kg. The rate of dose-limiting toxicities (DLTs) within 28 days following KTE-X19 infusion was the primary endpoint. KTE-X19 was manufactured for 54 enrolled patients and administered to 45 (median age: 46 years [range, 18-77]). No DLTs occurred in the DLT-evaluable cohort. Grade ≥3 cytokine release syndrome (CRS) and neurologic events (NE) occurred in 31% and 38% of patients, respectively. To optimize the benefit-risk ratio, revised adverse event (AE) management for CRS and NE (earlier steroid use for NE and tocilizumab only for CRS) was evaluated at 1×106 cells/kg KTE-X19. In the 9 patients treated under revised AE management, 33% had grade 3 CRS and 11% had grade 3 NE, with no grade 4/5 NE. The overall complete remission rate correlated with CAR T-cell expansion and was 83% in patients treated with 1×106 cells/kg and 69% in all patients. Minimal residual disease was undetectable in all responding patients. At 22.1 months (range, 7.1-36.1) median follow-up, the median duration of remission was 17.6 months (95% CI, 5.8-17.6) in patients treated with 1×106 cells/kg and 14.5 months (95% CI, 5.8-18.1) in all patients. KTE-X19 treatment provided a high response rate and tolerable safety in adults with R/R B-ALL. Phase 2 is ongoing at 1×106 cells/kg with revised AE management.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A504-A504
Author(s):  
Thomas Davis ◽  
Arthur DeCillis ◽  
Richard Hernandez ◽  
Jessica Price ◽  
Craig Carey ◽  
...  

BackgroundGEN-011 is a personalized neoantigen-targeted peripheral blood T cell therapy (NPT) developed for the treatment of adult patients (pts) with solid tumors. The proprietary ATLAS™ (Antigen Lead Acquisition System) will be used to identify true immunogenic neoantigens from each patient‘s tumor mutanome that are recognized by their own CD4+ and/or CD8+ T cells. ATLAS will also identify Inhibigens™, antigen targets of T cells that promote tumor growth.1 Autologous peripheral T cells will be specifically stimulated by up to 30 ATLAS-identified neoantigens, avoiding Inhibigens, to generate an adoptive T cell product. Preliminary data show yields of billions of highly active T cells with 96% neoantigen targeting across 89% of ATLAS selected neoantigens.MethodsTITAN-1 is a multicenter Phase 1 study of GEN-011 NPTs in patients with refractory melanoma, non-small cell lung cancer (NSCLC), squamous cell carcinoma of the head and neck (SCCHN), urothelial carcinoma (UC), renal cell carcinoma (RCC), small cell lung cancer (SCLC), cutaneous squamous cell carcinoma (CSCC), and anal squamous cell carcinoma (ASCC). Patients may enter into one of 2 cohorts of 6 DLT-evaluable patients, either a multiple lower dose (MLD) regimen of GEN-011 as an IV infusion at 4-week intervals, up to 5 doses maximum without lymphodepletion, or a single high dose (SHD) regimen of GEN-011 after flu/cy lymphodepletion. Each dose of GEN-011 will be followed by a course of interleukin-2 (IL-2). Patients will be followed for safety, immunogenicity, and anti-tumor activity over approximately a 5-month treatment period. A long-term follow-up will continue through 2 years after the initial dose of GEN-011.Trial Registration clinicaltrials.gov identifier: NCT04596033ReferencesLam H, et al. An empirical antigen selection method identifies neoantigens that either elicit broad anti-tumor response or drive tumor growth. Cancer Discovery 2021 March; 11(3):696–713.Ethics ApprovalThis study was approved by Western Institutional Review Board, approval number 1-1078861-1


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A519-A519
Author(s):  
Omid Hamid ◽  
Johanna Bendell ◽  
Siqing Fu ◽  
Kyriakos Papadopoulos ◽  
Judy Wang ◽  
...  

BackgroundCFI-402411 is an orally available small molecule potent inhibitor of HPK1 (Hematopoietic progenitor kinase 1). T-cells are negatively-regulated at different junctures of cancer-immunity cycle by this regulatory kinase. HPK1, (also mitogen activated protein kinase kinase kinase kinase 1 (MAP4K1)) is a protein serine/threonine kinase predominantly expressed in hematopoietic cells. In T-cells, following T-cell receptor activation, HPK1 is recruited to the plasma membrane where it phosphorylates the adapter protein SH2 domain-containing leukocyte protein of 76 kDa (SLP-76), down-regulating signaling events required for T cell activation and proliferation. Selected for development based on its pharmacologic properties and preclinical activity in a variety of syngeneic cancer models and assays, with an IC50 = 4.0±1.3 nM, CFI-402411 is expected to relieve HPK1-mediated inhibition of T and B cells, facilitating an anti-tumor immune response.MethodsPhase 1, 3 + 3 design in patients. Patients have acceptable laboratory, other parameters for study entry. Single agent dose daily oral escalation cohort (A1) in advanced tumors, then dose expansion (A3) with biomarker backfill (A2) in select advanced tumors; combination with PD-1 Inhibitor (pembrolizumab) (B1, pembrolizumab eligible tumors with no prior grade >=3 related to CPI)) and expansion (B2, PD-1/PD-L1 naïve pembrolizumab eligible tumors). DLT defined as any grade >=3 toxicity in first cycle of therapy (21d cycles). Standard assessments for response per RECIST v1.1 or iRECIST. The starting dose level was 80mg.ResultsAt 10 June 2021 data is available for 12 patients from A1. Median age 61.5 years (range 33–73), 8 patients female, and 10 white. Diagnoses were pancreatic cancer, colorectal (3 pts), ovarian, basal cell, cholangiocarcinoma, sigmoid, salivary and breast cancer (1 pt). Six patients (50%) had 4 prior therapies, 1 patient (basal cell) had prior treatment with immune checkpoint inhibitor, pembrolizumab. Four doses studied: 80, 120, 180 and 270mg. TEAEs across all CTCAE grades, (in >2 patients) were diarrhea (6 patients), nausea (4 patients), dyspepsia (3 patients), fatigue (3 patients). No related grade 3–5 events, one immune related event (grade 1, weight loss). 3 grade 3 events all unrelated to study drug - pleural effusion, rash, thromboembolic event. Discontinuation due to disease progression was main reason (7 patients). PK and PD assessments will be updated at time of presentation.ConclusionsCFI-402411 is a potent inhibitor of HPK1 that is well tolerated with a manageable adverse event profile and dose escalations continue. Further safety and efficacy results will be presented at the meeting including additional cohorts if available.AcknowledgementsTreadwell Therapeutics thanks all sites, importantly their patients and their families.Trial RegistrationClinicalTrials.gov Identifier: NCT04521413Ethics ApprovalThis study obtained has obtained ethics approvals at multiple institutions globally including;USAWCG IRB - Western Institutional Review Board - MOD00002618 (Submission ID)IntegReview Institutional Review Board - N/AAdvarra Central IRB - SSU00130103IntegReview Institutional Review Board N/AAdvarra Central IRB - SSU00137751Advarra Central IRB - SSU00143275The University of Texas MD Anderson Cancer Center Institutional Review Board - 2020–0678 (IRB ID Number)Hong KongJoint Chinese University of Hong Kong - New Territories East Cluster Clinical Research Ethics Committee - 2020.367 (Ref Number)CanadaOntario Cancer Research Ethics Board - 3320 (Project ID)Health Research Ethics Board of Alberta, HREBA Cancer Committee - HREBA.CC-20–0504 (Ethics ID Number)South KoreaimCORE - Seoul National University Hospital Institutional Review Board - H-2012-094-1182 (IRB Number)National Cancer Institute Review Board - 2020–0525–0001 (Receipt Number)All participants gave informed consent before taking part in this clinical trial.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-6
Author(s):  
Xian Zhang ◽  
Junfang Yang ◽  
Wenqian Li ◽  
Gailing Zhang ◽  
Yunchao Su ◽  
...  

Backgrounds As CAR T-cell therapy is a highly personalized therapy, process of generating autologous CAR-T cells for each patient is complex and can still be problematic, particularly for heavily pre-treated patients and patients with significant leukemia burden. Here, we analyzed the feasibility and efficacy in 37 patients with refractory/relapsed (R/R) B-ALL who received CAR T-cells derived from related donors. Patients and Methods From April 2017 to May 2020, 37 R/R B-ALL patients with a median age of 19 years (3-61 years), were treated with second-generation CD19 CAR-T cells derived from donors. The data was aggregated from three clinical trials (www.clinicaltrials.gov NCT03173417; NCT02546739; and www.chictr.org.cn ChiCTR-ONC-17012829). Of the 37 patients, 28 were relapsed following allogenic hematopoietic stem cell transplant (allo-HSCT) and whose lymphocytes were collected from their transplant donors (3 HLA matched sibling and 25 haploidentical). For the remaining 9 patients without prior transplant, the lymphocytes were collected from HLA identical sibling donors (n=5) or haploidentical donors (n=4) because CAR-T cells manufacture from patient samples either failed (n=5) or blasts in peripheral blood were too high (&gt;40%) to collect quality T-cells. The median CAR-T cell dose infused was 3×105/kg (1-30×105/kg). Results For the 28 patients who relapsed after prior allo-HSCT, 27 (96.4%) achieved CR within 30 days post CAR T-cell infusion, of which 25 (89.3%) were minimal residual disease (MRD) negative. Within one month following CAR T-cell therapy, graft-versus-host disease (GVHD) occurred in 3 patients including 1 with rash and 2 with diarrhea. A total of 19 of the 28 (67.9%) patients had cytokine release syndrome (CRS), including two patients (7.1%) with Grade 3-4 CRS. Four patients had CAR T-cell related neurotoxicity including 3 with Grade 3-4 events. With a medium follow up of 103 days (1-669days), the median overall survival (OS) was 169 days (1-668 days), and the median leukemia-free survival (LFS) was 158 days (1-438 days). After CAR T-cell therapy, 15 patients bridged into a second allo-HSCT and one of 15 patients (6.7%) relapsed following transplant, and two died from infection. There were 11 patients that did not receive a second transplantation, of which three patients (27.3%) relapsed, and four parents died (one due to relapse, one from arrhythmia and two from GVHD/infection). Two patients were lost to follow-up. The remaining nine patients had no prior transplantation. At the time of T-cell collection, the median bone marrow blasts were 90% (range: 18.5%-98.5%), and the median peripheral blood blasts were 10% (range: 0-70%). CR rate within 30 days post CAR-T was 44.4% (4/9 cases). Six patients developed CRS, including four with Grade 3 CRS. Only one patient had Grade 3 neurotoxicity. No GVHD occurred following CAR T-cell therapy. Among the nine patients, five were treated with CAR T-cells derived from HLA-identical sibling donors and three of those five patients achieved CR. One patient who achieved a CR died from disseminated intravascular coagulation (DIC) on day 16. Two patients who achieved a CR bridged into allo-HSCT, including one patient who relapsed and died. One of two patients who did not response to CAR T-cell therapy died from leukemia. Four of the nine patients were treated with CAR T-cells derived from haploidentical related donors. One of the four cases achieved a CR but died from infection on day 90. The other three patients who had no response to CAR T-cell therapy died from disease progression within 3 months (7-90 days). Altogether, seven of the nine patients died with a median time of 19 days (7-505 days). Conclusions We find that manufacturing CD19+ CAR-T cells derived from donors is feasible. For patients who relapse following allo-HSCT, the transplant donor derived CAR-T cells are safe and effective with a CR rate as high as 96.4%. If a patient did not have GVHD prior to CAR T-cell therapy, the incidence of GVHD following CAR T-cell was low. Among patients without a history of transplantation, an inability to collect autologous lymphocytes signaled that the patient's condition had already reached a very advanced stage. However, CAR T-cells derived from HLA identical siblings can still be considered in our experience, no GVHD occurred in these patients. But the efficacy of CAR T-cells from haploidentical donors was very poor. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 4 (13) ◽  
pp. 3024-3033 ◽  
Author(s):  
Kitsada Wudhikarn ◽  
Martina Pennisi ◽  
Marta Garcia-Recio ◽  
Jessica R. Flynn ◽  
Aishat Afuye ◽  
...  

Abstract Cytokine release syndrome (CRS) immune effector cell–associated neurotoxicity syndrome are the most notable toxicities of CD19 chimeric antigen receptor (CAR) T-cell therapy. In addition, CAR T-cell–mediated toxicities can involve any organ system, with varied impacts on outcomes, depending on patient factors and involved organs. We performed detailed analysis of organ-specific toxicities and their association with outcomes in 60 patients with diffuse large B-cell lymphoma (DLBCL) treated with CD19 CAR T cells by assessing all toxicities in organ-based groups during the first year posttreatment. We observed 539 grade ≥2 and 289 grade ≥3 toxicities. Common grade ≥3 toxicities included hematological, metabolic, infectious, and neurological complications, with corresponding 1-year cumulative incidence of 57.7%, 54.8%, 35.4%, and 18.3%, respectively. Patients with impaired performance status had a higher risk of grade ≥3 metabolic complications, whereas elevated lactate dehydrogenase was associated with higher risks of grade ≥3 neurological and pulmonary toxicities. CRS was associated with higher incidence of grade ≥3 metabolic, pulmonary, and neurologic complications. The 1-year nonrelapse mortality and overall survival were 1.7% and 69%, respectively. Only grade ≥3 pulmonary toxicities were associated with an increased mortality risk. In summary, toxicity burdens after CD19 CAR T-cell therapy were high and varied by organ systems. Most toxicities were manageable and were rarely associated with mortality. Our study emphasizes the importance of toxicity assessment, which could serve as a benchmark for further research to reduce symptom burdens and improve tolerability in patients treated with CAR T cells.


Blood ◽  
2020 ◽  
Author(s):  
Jordan Gauthier ◽  
Evandro D. Bezerra ◽  
Alexandre V. Hirayama ◽  
Salvatore Fiorenza ◽  
Alyssa Sheih ◽  
...  

CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T cell therapy has shown significant efficacy for relapsed or refractory (R/R) B-cell malignancies. Yet CD19 CAR T cells fail to induce durable responses in most patients. Second infusions of CD19 CAR T cells (CART2) have been considered as a possible approach to improve outcomes. We analyzed data from 44 patients with R/R B-cell malignancies (ALL, n=14; CLL, n=9; NHL, n=21) who received CART2 on a phase 1/2 trial at our institution. Despite a CART2 dose increase in 82% of patients, we observed a low incidence of severe toxicity after CART2 (grade ≥3 CRS, 9%; grade ≥3 neurotoxicity, 11%). After CART2, CR was achieved in 22% of CLL, 19% of NHL, and 21% of ALL patients. The median durations of response after CART2 in CLL, NHL, and ALL patients were 33, 6, and 4 months, respectively. Addition of fludarabine to cyclophosphamide-based lymphodepletion before CART1 and an increase in the CART2 dose compared to CART1 were independently associated with higher overall response rates and longer progression-free survival after CART2. We observed durable CAR T-cell persistence after CART2 in patients who received Cy-Flu lymphodepletion before CART1 and a higher CART2 compared to CART1 cell dose. The identification of two modifiable pre-treatment factors independently associated with better outcomes after CART2 suggests strategies to improve in vivo CAR T-cell kinetics and responses after repeat CAR T-cell infusions, and has implications for the design of trials of novel CAR T-cell products after failure of prior CAR T-cell immunotherapies.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3024-3024 ◽  
Author(s):  
Bijal D. Shah ◽  
William G. Wierda ◽  
Gary J. Schiller ◽  
Michael Russell Bishop ◽  
Januario E. Castro ◽  
...  

3024 Background: Promising results have been observed with KTE-C19, an anti-CD19 CAR T cell therapy, in refractory aggressive NHL in the ZUMA-1 trial (Blood 2016;128:LBA-6). We present here updated results from the ZUMA-3 phase 1 trial of KTE-C19 in adult patients (pts) with R/R ALL. Methods: Adult (≥18 y) pts with R/R ALL (Ph+ eligible), ≥25% bone marrow (BM) blasts, adequate organ function and ECOG status 0-1 received 1 or 2×106 CAR T cells/kg after conditioning with cyclophosphamide + fludarabine. Phase 1 primary endpoint is incidence of dose-limiting toxicity (DLT). Secondary endpoints include efficacy outcomes and biomarker associations. Results: As of Nov 1, 2016, 11 pts were enrolled; 10 received KTE-C19. One pt had a serious adverse event (SAE) prior to dosing and was not treated. KTE-C19 was successfully manufactured in all pts across a broad range of baseline absolute lymphocyte counts in 6 days in a centralized facility, with an approximate 2-week turnaround time. Pts were 60% men with 1-4 prior lines of therapy and high disease burden (median, 70% BM blasts). No pt (0/3) experienced a DLT at the 2×106 dose. Phase 1 was expanded to 6 pts at the same dose; 1 grade (Gr) 5 AE (multiorgan failure due to cytokine release syndrome [CRS]) was observed. Subsequent pts (4) received 1×106 CAR T cells/kg. Overall, the most common Gr≥3 AEs were cytopenias (80%), febrile neutropenia (50%), pyrexia (40%), and transaminitis (40%). Gr≥3 CRS and neurologic events (NEs) were reported in 20% and 40% of pts, respectively. Cerebral edema was not observed. All CRS (except Gr5) and 5 of 6 NEs (1 Gr3 ongoing at cut-off) resolved. Of the 8 efficacy evaluable pts, 6 achieved an MRD-negative (MRD–) complete response (CR, or CR + partial or incomplete hematopoietic recovery). Updated results will include additional pt follow-up and biomarker data. Conclusions: No DLTs were observed with KTE-C19 in adult pts with high BM disease burden; one pt had G5 CRS after the DLT cohort. Manufacturing was successful in all pts; most pts achieved an MRD– CR. Based on these results, ZUMA-3 continues to enroll pts with additional measures implemented to further enhance safety. Clinical trial information: NCT02614066.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1455-1455 ◽  
Author(s):  
Peter Westervelt ◽  
Gail J. Roboz ◽  
Jorge E. Cortes ◽  
Hagop M. Kantarjian ◽  
Sangmin Lee ◽  
...  

Abstract Background: AMV564 is a novel bivalent, bispecific (2x2) CD33/CD3 targeted immunotherapy that binds both CD33 and the invariant CD3ε on T-cell receptors with strong avidity, thus creating an immune synapse between CD33-expressing cells and T cells, initiating T-cell directed lysis of CD33 expressing cells, and inducing expansion, differentiation and proliferation of T cells. By design, AMV564 has reduced clearance and therefore has a longer half-life (t1/2) than monovalent, bispecific T-cell engagers. In preclinical investigations using both leukemic cell lines and primary cells from AML patients, AMV564 eliminated myeloid blasts with picomolar potency and broad activity independent of cytogenetic or molecular abnormalities, CD33 expression level, and disease stage, with no nonspecific activation of T cells (Reusch U et al. Clin Cancer Res 2016;22:5829-38). Methods: This is an ongoing Phase 1 study with a 3+3 dose-escalation design (NCT03144245). The primary objectives of this study are to characterize the safety, tolerability, and preliminary anti-leukemic activity of AMV564. Evaluation of pharmacokinetics (PK), cytokine changes, and immunophenotyping are secondary objectives. Key inclusion/exclusion criteria are: adults with relapsed and/or refractory AML after 1-2 prior induction regimens (with a standard anthracycline-based regimen or hypomethylating agent) and no more than 2 prior salvage regimens. AMV564 is administered by continuous intravenous infusion (CIV) for 14 consecutive days for up to 2 induction cycles. AMV564 and cytokine (IL2, IL4, IL6, IL8, IL10, TNF-α, and IFN-γ) concentrations were measured by validated immunoassays. T-cell activation was measured using flow cytometry to quantify T cells expressing CD25, CD38, CD69, or HLA-DR. Results: To date, 19 patients (10 male/9 female) with a median age of 72 years (range 24-84) have been enrolled in 6 dosing cohorts: 0.5, 1.5, 5.0, 15, 50, and 100 mcg/day. Thirteen patients (68%) had secondary AML and/or adverse cytogenetics, including 6 patients (32%) with a p53 mutation. Fifteen patients (79%) had received at least 1 prior salvage regimen and 11 (58%) had received prior intensive chemotherapy, including 6 patients (32%) who had received a high-dose (≥ 1 gm/m2) cytarabine-based regimen. Overall, 18 patients were evaluable for toxicity and response. No dose-limiting toxicity or treatment-related grade ≥ 3 adverse events (AE) were reported. Grade 2 CRS was observed in 1 patient (treated at 50 mcg/day) without a lead-in dose and was managed with drug interruption and 1 dose of tocilizumab. The patient was able to resume dosing and completed the full 14-day scheduled therapy without recurrence of CRS. Subsequent patients treated at 50 mcg/day and above were given a 15 mcg/day lead-in dose for 3 days followed by 11 days at the assigned dose level. The most common grade ≥ 3 treatment-emergent AE has been febrile neutropenia, reported in 39% (7/18) of patients and all considered unrelated to study drug. No patient has died within 30 days of treatment initiation. AMV564 PK was linear with a terminal t1/2 of 2-3 days. Plasma concentrations increased gradually, with times to steady-state concentration of 3-7 days. Marked increases in IL6 (peak concentration, 1.1 ng/mL), IL8 (1.5 ng/mL), and IL10 (0.3 ng/mL) cytokines were observed and increased numbers of activated T-cells were detected post-treatment. Reductions in bone marrow blasts, ranging from 13% to 91%, were observed in 12 of 18 evaluable patients including a partial response after cycle 1 in 1 patient at the 100 mcg/day dose level. Conclusions: AMV564 is well-tolerated and demonstrates anti-leukemic activity through T-cell engagement. AMV564 has a unique PK profile with a gradual increase in drug concentration and thus the potential for controlled T-cell activation. Disclosures Roboz: Daiichi Sankyo: Consultancy; Argenx: Consultancy; Sandoz: Consultancy; Aphivena Therapeutics: Consultancy; Cellectis: Research Funding; Argenx: Consultancy; Eisai: Consultancy; Celgene Corporation: Consultancy; Roche/Genentech: Consultancy; Jazz Pharmaceuticals: Consultancy; Otsuka: Consultancy; Roche/Genentech: Consultancy; Jazz Pharmaceuticals: Consultancy; Otsuka: Consultancy; AbbVie: Consultancy; Astex Pharmaceuticals: Consultancy; Celgene Corporation: Consultancy; Janssen Pharmaceuticals: Consultancy; AbbVie: Consultancy; Astex Pharmaceuticals: Consultancy; Bayer: Consultancy; Novartis: Consultancy; Sandoz: Consultancy; Novartis: Consultancy; Celltrion: Consultancy; Aphivena Therapeutics: Consultancy; Pfizer: Consultancy; Cellectis: Research Funding; Eisai: Consultancy; Orsenix: Consultancy; Celltrion: Consultancy; Bayer: Consultancy; Pfizer: Consultancy; Janssen Pharmaceuticals: Consultancy; Daiichi Sankyo: Consultancy; Orsenix: Consultancy. Cortes:Novartis: Consultancy, Research Funding; Astellas Pharma: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Daiichi Sankyo: Consultancy, Research Funding; Arog: Research Funding. Lee:AstraZeneca: Consultancy; Clinipace: Consultancy; Karyopharm Therapeutics Inc: Consultancy; LAM Therapeutics: Research Funding; Amgen: Consultancy. Rettig:Amphivena Therapeutics: Research Funding; Novimmune: Research Funding. Han:Amphivena Therapeutics, Inc: Employment. Guenot:Amphivena Therapeutics, Inc: Employment. Feldman:Amphivena Therapeutics, Inc: Employment.


Sign in / Sign up

Export Citation Format

Share Document