E01 Widespread loss of presynaptic terminal marker SV2A in early huntington disease

2021 ◽  
Author(s):  
Aline Delva ◽  
Laura Michiels ◽  
Michel Koole ◽  
Koen Van Laere ◽  
Wim Vandenberghe
Neurology ◽  
2021 ◽  
Vol 98 (1) ◽  
pp. e83-e94
Author(s):  
Aline Delva ◽  
Laura Michiels ◽  
Michel Koole ◽  
Koen Van Laere ◽  
Wim Vandenberghe

Background and ObjectivesSynaptic damage has been proposed to play a major role in the pathophysiology of Huntington disease (HD), but in vivo evidence in humans is lacking. We performed a PET imaging study to assess synaptic damage and its clinical correlates in early HD in vivo.MethodsIn this cross-sectional study, premanifest and early manifest (Shoulson-Fahn stage 1 and 2) HD mutation carriers and age- and sex-matched healthy controls underwent clinical assessment of motor and nonmotor manifestations and time-of-flight PET with 11C-UCB-J, a radioligand targeting the ubiquitous presynaptic terminal marker synaptic vesicle protein 2A (SV2A). We also performed 18F-fluorodeoxyglucose (18F-FDG)-PET in all participants because regional cerebral glucose consumption is thought to largely reflect synaptic activity. Volumes of interest were delineated on the basis of individual 3-dimensional T1 MRI. Standardized uptake value ratio-1 images were calculated for 11C-UCB-J with the centrum semiovale as reference region. 18F-FDG-PET activity was normalized to the pons. All PET data were corrected for partial volume effects. Volume of interest– and voxel-based analyses were performed. Correlations between clinical scores and 11C-UCB-J PET data were calculated.ResultsEighteen HD mutation carriers (age 51.4 ± 11.6 years; 6 female; 7 premanifest, 11 early manifest) and 15 healthy controls (age 52.3 ± 3.5 years; 4 female) were included. In the HD group, significant loss of SV2A binding was found in putamen, caudate, pallidum, cerebellum, parietal, and temporal and frontal cortex, whereas reduced 18F-FDG uptake was restricted to caudate and putamen. In the premanifest subgroup, 11C-UCB-J and 18F-FDG-PET showed significant reductions in putamen and caudate only. In the total HD group, SV2A loss in the putamen correlated with motor impairment.DiscussionOur data reveal loss of presynaptic terminal integrity in early HD, which begins in the striatum in the premanifest phase, spreads extensively to extrastriatal regions in the early manifest phase, and correlates with motor impairment. 11C-UCB-J PET is more sensitive than 18F-FDG-PET for detection of extrastriatal changes in early HD.Classification of EvidenceThis study provides Class III evidence that 11C-UCB-J PET accurately discriminates individuals HD from normal controls.


2016 ◽  
Vol 55 (01) ◽  
pp. 21-28 ◽  
Author(s):  
C. Antke ◽  
H. Hautzel ◽  
H.-W. Mueller ◽  
S. Nikolaus

SummaryNumerous neurologic and psychiatric conditions are treated with pharmacological compounds, which lead to an increase of synaptic dopamine (DA) levels. One example is the DA precursor L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted to DA in the presynaptic terminal. If the increase of DA concentrations in the synaptic cleft leads to competition with exogenous radioligands for presynaptic binding sites, this may have implications for DA transporter (DAT) imaging studies in patients under DAergic medication.This paper gives an overview on those findings, which, so far, have been obtained on DAT binding in human Parkinson’s disease after treatment with L-DOPA. Findings, moreover, are related to results obtained on rats, mice or non-human primates. Results indicate that DAT imaging may be reduced in the striata of healthy animals, in the unlesioned striata of animal models of unilateral Parkinson’s disease and in less severly impaired striata of Parkinsonian patients, if animal or human subjects are under acute or subchronic treatment with L-DOPA. If also striatal DAT binding is susceptible to alterations of synaptic DA levels, this may allow to quantify DA reuptake in analogy to DA release by assessing the competition between endogenous DA and the administered exogenous DAT radioligand.


Author(s):  
Falaq Naz ◽  
Yasir Hasan Siddique

: Neurodegenerative diseases including Alzheimer’s, Parkinson’s and Huntington disease are have serious concern due to its effect on the quality of life of affected persons. Neurodegenerative diseases have some limitations for both diagnostic as well as at treatment level. Introducing nanotechnology, for the treatment of these diseases may contribute significantly in solving the problem. There are several treatment strategies for the neurodegenerative diseases, but their limitations are the entry into the due to the presence of the blood-brain barrier (BBB). The present review highlights the application of nanotechnology during last 20 years for the treatment of neurodegenerative diseases.


1992 ◽  
Vol 158 (1) ◽  
pp. 215-216 ◽  
Author(s):  
A Denys ◽  
A Leroy-Willig ◽  
D Riche ◽  
P Hantraye

Sign in / Sign up

Export Citation Format

Share Document