scholarly journals Operator training requirements and diagnostic accuracy of Fibroscan in routine clinical practice

2013 ◽  
Vol 89 (1058) ◽  
pp. 685-692 ◽  
Author(s):  
M J Armstrong ◽  
C Corbett ◽  
J Hodson ◽  
N Marwah ◽  
R Parker ◽  
...  
PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e77456 ◽  
Author(s):  
Nakwon Kwak ◽  
Sun Mi Choi ◽  
Jinwoo Lee ◽  
Young Sik Park ◽  
Chang-Hoon Lee ◽  
...  

2021 ◽  
pp. 1-17
Author(s):  
Mandy Melissa Jane Wittens ◽  
Diana Maria Sima ◽  
Ruben Houbrechts ◽  
Annemie Ribbens ◽  
Ellis Niemantsverdriet ◽  
...  

Background: Magnetic resonance imaging (MRI) has become important in the diagnostic work-up of neurodegenerative diseases. icobrain dm, a CE-labeled and FDA-cleared automated brain volumetry software, has shown potential in differentiating cognitively healthy controls (HC) from Alzheimer’s disease (AD) dementia (ADD) patients in selected research cohorts. Objective: This study examines the diagnostic value of icobrain dm for AD in routine clinical practice, including a comparison to the widely used FreeSurfer software, and investigates if combined brain volumes contribute to establish an AD diagnosis. Methods: The study population included HC (n = 90), subjective cognitive decline (SCD, n = 93), mild cognitive impairment (MCI, n = 357), and ADD (n = 280) patients. Through automated volumetric analyses of global, cortical, and subcortical brain structures on clinical brain MRI T1w (n = 820) images from a retrospective, multi-center study (REMEMBER), icobrain dm’s (v.4.4.0) ability to differentiate disease stages via ROC analysis was compared to FreeSurfer (v.6.0). Stepwise backward regression models were constructed to investigate if combined brain volumes can differentiate between AD stages. Results: icobrain dm outperformed FreeSurfer in processing time (15–30 min versus 9–32 h), robustness (0 versus 67 failures), and diagnostic performance for whole brain, hippocampal volumes, and lateral ventricles between HC and ADD patients. Stepwise backward regression showed improved diagnostic accuracy for pairwise group differentiations, with highest performance obtained for distinguishing HC from ADD (AUC = 0.914; Specificity 83.0%; Sensitivity 86.3%). Conclusion: Automated volumetry has a diagnostic value for ADD diagnosis in routine clinical practice. Our findings indicate that combined brain volumes improve diagnostic accuracy, using real-world imaging data from a clinical setting.


2020 ◽  
pp. bmjebm-2020-111577
Author(s):  
Ross Prager ◽  
Kay Wu ◽  
Roudi Bachar ◽  
Rudy R Unni ◽  
Joshua Bowdridge ◽  
...  

ObjectivesPoint-of-care ultrasound (POCUS) diagnostic accuracy research has significant variation in blinding practices. This study characterises the blinding practices during acute POCUS research to determine whether research methodology adequately reflects POCUS use in routine clinical practice.Design, settings and participantsA search for POCUS diagnostic accuracy studies published in Emergency Medicine, Anaesthesia and Critical Care journals from January 2016 to January 2020 was performed. Studies were included if they were primary diagnostic accuracy studies. The study year, journal impact factor, population, hospital area, body region, study design, blinding of the POCUS interpreter to clinical information, whether the person performing the POCUS scan was the same person interpreting the scan, and whether the study reported incremental diagnostic yield were extracted in duplicate by two authors. Descriptive statistics were provided and prespecified subgroup analysis was performed.Main outcome measuresThe primary outcome was the number of studies that blinded the POCUS interpreter to at least some part of the clinical information. Secondary outcomes included whether the person performing the POCUS scan was the same person interpreting it and whether the study reported incremental diagnostic yield.Results520 abstracts were screened with 97 studies included. The POCUS interpreter was blinded to clinical information in 37 studies (38.1%), not blinded in 34 studies (35.1%) and not reported in 26 studies (26.8%). The POCUS interpreter was the same person obtaining the images in 72 studies (74.2%), different in 14 studies (14.4%) and not reported in 11 studies (11.3%). Only four studies (4.1%) reported incremental diagnostic yield for POCUS. Inter-rater reliability was moderate (k=0.64). Subgroup analysis based on impact factor, body region, hospital area, patient population and study design did not show significant differences after completing pairwise comparisons.ConclusionsAlthough blinding the POCUS interpreter to clinical information may be done in a perceived attempt to limit bias, this may result in accuracy estimates that do not reflect routine clinical practice. Similarly, having a different clinician perform and interpret the POCUS scan significantly limits generalisability to practice as it does not truly reflect ‘point-of-care’ ultrasound at all. Reporting incremental diagnostic yield from implementing POCUS into a diagnostic pathway better reflects the value of POCUS; however, this methodology was infrequently used.Trial registration numberThe study protocol was registered on Open Science Framework (https://osf.io/h5fe7/).


2011 ◽  
Vol 7 (3) ◽  
pp. 225
Author(s):  
Gianfranco Sinagra ◽  
Michele Moretti ◽  
Giancarlo Vitrella ◽  
Marco Merlo ◽  
Rossana Bussani ◽  
...  

In recent years, outstanding progress has been made in the diagnosis and treatment of cardiomyopathies. Genetics is emerging as a primary point in the diagnosis and management of these diseases. However, molecular genetic analyses are not yet included in routine clinical practice, mainly because of their elevated costs and execution time. A patient-based and patient-oriented clinical approach, coupled with new imaging techniques such as cardiac magnetic resonance, can be of great help in selecting patients for molecular genetic analysis and is crucial for a better characterisation of these diseases. This article will specifically address clinical, magnetic resonance and genetic aspects of the diagnosis and management of cardiomyopathies.


Sign in / Sign up

Export Citation Format

Share Document