scholarly journals A potential role of microvesicle-containing miR-223/142 in lung inflammation

Thorax ◽  
2019 ◽  
Vol 74 (9) ◽  
pp. 865-874 ◽  
Author(s):  
Duo Zhang ◽  
Heedoo Lee ◽  
Xiaoyun Wang ◽  
Michael Groot ◽  
Lokesh Sharma ◽  
...  

BackgroundUncontrolled lung inflammation is one of the prominent features in the pathogenesis of lung infection- associated acute lung injury (ALI). Microvesicles (MVs) are extracellular nanovesicles that are generated via direct membrane budding.MethodsBronchoalveolar lavage fluid (BALF) samples were collected from mice with or without intratracheal lipopolysaccharide (LPS) instillation. BALF MVs were characterised and MV-containing microRNA (miRNA) profiles were assessed and confirmed. Secretion and function of MV-containing miR-223/142 (MV-miR-223/142) were analysed in vivo.ResultsIn BALF, MVs are mainly derived from macrophages in response to LPS. After intratracheal instillation (i.t.) of LPS or Klebsiella pneumoniae, MV-containing miR-223/142 are dramatically induced in both BALF and serum. Mechanistically, miRNA 3′ end uridylation mediates the packing of miR-223/142 into MVs. To investigate the functional role of MV-miR-223/142, we loaded miR-223/142 mimics into unstimulated MVs and delivered them into the murine lungs via i.t. The miR-223/142 mimics-enriched MVs selectively targeted lung macrophages and suppressed the inflammatory lung responses that were triggered by LPS or K. pneumoniae. Mechanistically, miR-223 and miR-142 synergistically suppress Nlrp3 inflammasome activation in macrophages via inhibition of Nlrp3 and Asc, respectively.ConclusionsIn the pathogenesis of lung macrophage-mediated inflammatory responses, MV-miR-223/142 secretion is robustly enhanced and detectable in BALF and serum. Furthermore, restoration of intracellular miR-223/142 via vesicle-mediated delivery suppresses macrophage activation and lung inflammation via inhibition of Nlrp3 inflammasome activation.

2021 ◽  
pp. annrheumdis-2021-220295
Author(s):  
Zhou Lan ◽  
Lvyi Chen ◽  
Jing Feng ◽  
Zili Xie ◽  
Zhiyong Liu ◽  
...  

Crystal structures activate innate immune cells, especially macrophages and initiate inflammatory responses. We aimed to understand the role of the mechanosensitive TRPV4 channel in crystal-induced inflammation. Real-time RT-PCR, RNAscope in situ hybridisation, and Trpv4eGFP mice were used to examine TRPV4 expression and whole-cell patch-clamp recording and live-cell Ca2+ imaging were used to study TRPV4 function in mouse synovial macrophages and human peripheral blood mononuclear cells (PBMCs). Both genetic deletion and pharmacological inhibition approaches were used to investigate the role of TRPV4 in NLRP3 inflammasome activation induced by diverse crystals in vitro and in mouse models of crystal-induced pain and inflammation in vivo. TRPV4 was functionally expressed by synovial macrophages and human PBMCs and TRPV4 expression was upregulated by stimulation with monosodium urate (MSU) crystals and in human PBMCs from patients with acute gout flares. MSU crystal-induced gouty arthritis were significantly reduced by either genetic ablation or pharmacological inhibition of TRPV4 function. Mechanistically, TRPV4 mediated the activation of NLRP3 inflammasome by diverse crystalline materials but not non-crystalline NLRP3 inflammasome activators, driving the production of inflammatory cytokine interleukin-1β which elicited TRPV4-dependent inflammatory responses in vivo. Moreover, chemical ablation of the TRPV1-expressing nociceptors significantly attenuated the MSU crystal-induced gouty arthritis. In conclusion, TRPV4 is a common mediator of inflammatory responses induced by diverse crystals through NLRP3 inflammasome activation in macrophages. TRPV4-expressing resident macrophages are critically involved in MSU crystal-induced gouty arthritis. A neuroimmune interaction between the TRPV1-expressing nociceptors and the TRPV4-expressing synovial macrophages contributes to the generation of acute gout flares.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6238
Author(s):  
Paromita Sarbadhikary ◽  
Blassan P. George ◽  
Heidi Abrahamse

The pyrin domain-containing multiprotein complex NLRP3 inflammasome, consisting of the NLRP3 protein, ASC adaptor, and procaspase-1, plays a vital role in the pathophysiology of several inflammatory disorders, including neurological and metabolic disorders, chronic inflammatory diseases, and cancer. Several phytochemicals act as promising anti-inflammatory agents and are usually regarded to have potential applications as complementary or alternative therapeutic agents against chronic inflammatory disorders. Various in vitro and in vivo studies have reported the anti-inflammatory role of berberine (BRB), an organic heteropentacyclic phytochemical and natural isoquinoline, in inhibiting NLRP3 inflammasome-dependent inflammation against many disorders. This review summarizes the mechanism and regulation of NLRP3 inflammasome activation and its involvement in inflammatory diseases, and discusses the current scientific evidence on the repressive role of BRB on NLRP3 inflammasome pathways along with the possible mechanism(s) and their potential in counteracting various inflammatory diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mustafa Yalcinkaya ◽  
Wenli Liu ◽  
Mohammad N. Islam ◽  
Andriana G. Kotini ◽  
Galina A. Gusarova ◽  
...  

AbstractDespite the initial success of some drugs and vaccines targeting COVID-19, understanding the mechanism underlying SARS-CoV-2 disease pathogenesis remains crucial for the development of further approaches to treatment. Some patients with severe Covid-19 experience a cytokine storm and display evidence of inflammasome activation leading to increased levels of IL-1β and IL-18; however, other reports have suggested reduced inflammatory responses to Sars-Cov-2. In this study we have examined the effects of the Sars-Cov-2 envelope (E) protein, a virulence factor in coronaviruses, on inflammasome activation and pulmonary inflammation. In cultured macrophages the E protein suppressed inflammasome priming and NLRP3 inflammasome activation. Similarly, in mice transfected with E protein and treated with poly(I:C) to simulate the effects of viral RNA, the E protein, in an NLRP3-dependent fashion, reduced expression of pro-IL-1β, levels of IL-1β and IL-18 in broncho-alveolar lavage fluid, and macrophage infiltration in the lung. To simulate the effects of more advanced infection, macrophages were treated with both LPS and poly(I:C). In this setting the E protein increased NLRP3 inflammasome activation in both murine and human macrophages. Thus, the Sars-Cov-2 E protein may initially suppress the host NLRP3 inflammasome response to viral RNA while potentially increasing NLRP3 inflammasome responses in the later stages of infection. Targeting the Sars-Cov-2 E protein especially in the early stages of infection may represent a novel approach to Covid-19 therapy.


2014 ◽  
Vol 211 (7) ◽  
pp. 1333-1347 ◽  
Author(s):  
Mary A. Rodgers ◽  
James W. Bowman ◽  
Hiroaki Fujita ◽  
Nicole Orazio ◽  
Mude Shi ◽  
...  

Linear ubiquitination is a newly discovered posttranslational modification that is currently restricted to a small number of known protein substrates. The linear ubiquitination assembly complex (LUBAC), consisting of HOIL-1L, HOIP, and Sharpin, has been reported to activate NF-κB–mediated transcription in response to receptor signaling by ligating linear ubiquitin chains to Nemo and Rip1. Despite recent advances, the detailed roles of LUBAC in immune cells remain elusive. We demonstrate a novel HOIL-1L function as an essential regulator of the activation of the NLRP3/ASC inflammasome in primary bone marrow–derived macrophages (BMDMs) independently of NF-κB activation. Mechanistically, HOIL-1L is required for assembly of the NLRP3/ASC inflammasome and the linear ubiquitination of ASC, which we identify as a novel LUBAC substrate. Consequently, we find that HOIL-1L−/− mice have reduced IL-1β secretion in response to in vivo NLRP3 stimulation and survive lethal challenge with LPS. Together, these data demonstrate that linear ubiquitination is required for NLRP3 inflammasome activation, defining the molecular events of NLRP3 inflammasome activation and expanding the role of LUBAC as an innate immune regulator. Furthermore, our observation is clinically relevant because patients lacking HOIL-1L expression suffer from pyogenic bacterial immunodeficiency, providing a potential new therapeutic target for enhancing inflammation in immunodeficient patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yao Qin ◽  
Yanwei Yu ◽  
Chendong Yang ◽  
Zhuien Wang ◽  
Yi Yang ◽  
...  

Inflammatory bowel disease (IBD) is an important high-risk factor that promotes the occurrence and development of colon cancer. Research on the mechanism of regulating NLRP3 can provide potential targets for treating NLRP3 inflammasome–related diseases and changing the inflammatory potential of immune cells. In this study, the effects of atractylenolide I on colitis-associated CRC (caCRC) and inflammasome activation were investigated both in vivo and in vitro. Furthermore, the role of atractylenolide I on Drp1-mediated mitochondrial fission was analyzed via Western blotting and transmission electron microscopy (TEM). Moreover, the Drp1 overexpression lentiviral vector was used to study the role of Drp1 on the signaling mechanisms of atractylenolide I. Atractylenolide I treatment significantly reduced the cell viability of human HCT116 and SW480 cells and induced apoptosis, and effectively inhibited colon tumors in the AOM/DSS mouse model. The reduction of NLRP3 inflammasome activation and excessive fission of mitochondria mediated by Drp1 were associated with the administration of atractylenolide I. Upregulation of Drp1 reversed the inhibitory effect of atractylenolide I on the activation of NLRP3 inflammasomes. Overexpressing the Drp1 expression counteracted the restraint of atractylenolide I on the release of IL-1β of LPS/DSS-stimulated BMDMs. Atractylenolide I inhibited NLRP3 and caspase-1 expression in mice BMDMs, with no influence in the Drp1-overexpressed BMDMs. These results demonstrated that atractylenolide I inhibits NLRP3 inflammasome activation in colitis-associated colorectal cancer via suppressing Drp1-mediated mitochondrial fission.


2021 ◽  
Author(s):  
Jin Wang ◽  
Haiyuan Yang ◽  
Fan Zhang ◽  
Minghao Shao ◽  
Haocheng Xu ◽  
...  

Abstract BackgroundMicroglia pyroptosis-induced neuroinflammation has been one of the potential treatment targets for spinal cord injury (SCI). And melatonin is reported to have anti-neuroinflammation effect on SCI, but the underlying mechanism is largely unexplored. In addition, the potential regulatory role of stimulator of interferon genes (STING) mediated innate immune response in the SCI-induced neuroinflammation also remains unknown. The aim of this study is to identify the potential molecular mechanism of the anti-neuroinflammation effect of melatonin in SCI mice and to explore whether STING-mediated signal pathway is involved in this pharmacological process. MethodsIn vivo, the C57BL/6 female mice underwent SCI injury or Sham surgery (laminectomy alone). Melatonin and selective STING antagonist C-176 were administered intraperitoneally after injury in the SCI group once a day for 3 or 28 consecutive days for different experiments. The BMS score system was adopted to assess the motor function of mice. In vitro, the Lipopolysaccharide (LPS)/ATP was combinedly used to induce cell pyroptosis in BV2 microglia and the adenovirus was used to overexpress STING. A series of molecular experiments including Western blot (WB), quantitative real-time polymerase chain reaction (RT-qPCR), enzyme linked immunosorbent assay (ELISA) and immunofluorescence (IF) were performed in vivo and in vitro. ResultsOur results showed that melatonin effectively suppressed NLRP3 inflammasome-induced pyroptosis and STING-mediated pathway after SCI. In addition, C-176 also alleviated the NLRP3 inflammasome-mediated pyroptosis and promoted functional recovery in vivo. In vitro, we also found that melatonin abrogated NLRP3 inflammasome activation in LPS/ATP-induced BV2 cells, while overexpression of STING reversed the anti-pyroptotic role of melatonin. Subsequent results together indicated that the role of melatonin on STING-dependent NLRP3 inflammasome activation may be mediated by decreasing ROS production and cytosolic mtDNA release. ConclusionThis study preliminarily demonstrated that melatonin exerts its anti-neuroinflammation role on SCI by alleviating the NLRP3 inflammasome-mediated pyroptosis, which was mediated by blocking the ROS/mtDNA/STING pathway. It provides us a better understanding of the pathological mechanism after SCI and offer experiment evidence to promote the use of melatonin for SCI.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20820-20836 ◽  
Author(s):  
Tianshu Wu ◽  
Xue Liang ◽  
Keyu He ◽  
Tingting Wei ◽  
Yan Wang ◽  
...  

Ag2Se QD exposure activated microglia followed by pro-inflammatory cytokine IL-1β release in vivo and in vitro through NLRP3 inflammasome activation.


2019 ◽  
Vol 20 (14) ◽  
pp. 3466 ◽  
Author(s):  
Francesca Bonomini ◽  
Mariane Dos Santos ◽  
Francisco Veríssimo Veronese ◽  
Rita Rezzani

Lupus nephritis (LN) is a kidney inflammatory disease caused by systemic lupus erythematosus (SLE). NLRP3 inflammasome activation is implicated in LN pathogenesis, suggesting its potential targets for LN treatment. Melatonin, an endogenous indoleamine, is considered an important multitasking molecule that has been reported to have anti-inflammatory effects by inhibiting nuclear factor-kappa B (NF-κB)-mediated inflammatory responses in vivo. This molecule has also protective effects against the activation of the inflammasomes and, in particular, the NLRP3 inflammasome. Thus, this work evaluated the effect of melatonin on morphological alteration and NLRP3 inflammasome activation in LN pristane mouse models. To evaluate the melatonin effects in these mice, we studied the renal cytoarchitecture by means of morphological analyses and immunohistochemical expression of specific markers related to oxidative stress, inflammation and inflammasome activation. Our results showed that melatonin attenuates pristane-induced LN through restoring of morphology and attenuation of oxidative stress and inflammation through a pathway that inhibited activation of NLRP3 inflammasome signaling. Our data clearly demonstrate that melatonin has protective activity on lupus nephritis in these mice that is highly associated with its effect on enhancing the Nrf2 antioxidant signaling pathway and decreasing renal NLRP3 inflammasome activation.


Author(s):  
Yali Zhang ◽  
Peipei Zhu ◽  
Xiaofeng Wu ◽  
Tianli Yuan ◽  
Zhangyao Su ◽  
...  

Abstract Microcystin-LR (MC-LR), the most common and toxic microcystin (MC) present in freshwater, poses a substantial threat to human health, especially hepatotoxicity. Recent evidence reveals that the NLRP3 inflammasome plays an important role in liver injury by activating caspase-1 to promote interleukin-1β (IL-1β) secretion. In this study, we investigated the possible role of NLRP3 inflammasome activation in MC-LR-induced mouse liver inflammatory injury. We found that MC-LR administered to mice by oral gavage mainly accumulated in liver and induced the activation of the NLRP3 inflammasome and production of mature IL-1β. Additionally, we observed an increase in the levels of NLRP3 inflammasome-related proteins and the proportion of pyroptosis in MC-LR-treated AML-12 cells. We also found that inhibition of NLRP3 in mice attenuated MC-LR-induced IL-1β production, indicating an essential role for NLRP3 in MC-LR-induced liver inflammatory injury. In addition, we found that inhibition of FOXO1 by AKT-mediated hyperphosphorylation, due to protein phosphatase 2A (PP2A) inhibition, is required for MC-LR-induced expression of NLRP3. Taken together, our in vivo and in vitro findings suggest a model in which the NLRP3 inflammasome activation, a result of AKT-mediated hyperphosphorylation of FOXO1 through inhibition of PP2A, plays a key role in MC-LR–induced liver inflammatory injury via IL-1β secretion and pyroptotic cell death.


Sign in / Sign up

Export Citation Format

Share Document