A Location Analysis of Short-Term Rentals (STRs) with Residents’ Evaluation in Hot-Spring Tourism Town

2021 ◽  
Vol 56 (3) ◽  
pp. 1085-1091
Author(s):  
Yuka Himeno ◽  
Ayano Sashikata ◽  
JaeHoon Chung
2015 ◽  
Vol 81 (11) ◽  
pp. 3834-3847 ◽  
Author(s):  
Matthew R. Urschel ◽  
Michael D. Kubo ◽  
Tori M. Hoehler ◽  
John W. Peters ◽  
Eric S. Boyd

ABSTRACTRates of dissolved inorganic carbon (DIC), formate, and acetate mineralization and/or assimilation were determined in 13 high-temperature (>73°C) hot springs in Yellowstone National Park (YNP), Wyoming, in order to evaluate the relative importance of these substrates in supporting microbial metabolism. While 9 of the hot spring communities exhibited rates of DIC assimilation that were greater than those of formate and acetate assimilation, 2 exhibited rates of formate and/or acetate assimilation that exceeded those of DIC assimilation. Overall rates of DIC, formate, and acetate mineralization and assimilation were positively correlated with spring pH but showed little correlation with temperature. Communities sampled from hot springs with similar geochemistries generally exhibited similar rates of substrate transformation, as well as similar community compositions, as revealed by 16S rRNA gene-tagged sequencing. Amendment of microcosms with small (micromolar) amounts of formate suppressed DIC assimilation in short-term (<45-min) incubations, despite the presence of native DIC concentrations that exceeded those of added formate by 2 to 3 orders of magnitude. The concentration of added formate required to suppress DIC assimilation was similar to the affinity constant (Km) for formate transformation, as determined by community kinetic assays. These results suggest that dominant chemoautotrophs in high-temperature communities are facultatively autotrophic or mixotrophic, are adapted to fluctuating nutrient availabilities, and are capable of taking advantage of energy-rich organic substrates when they become available.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Laurey Steinke ◽  
Gordon W. Slysz ◽  
Mary S. Lipton ◽  
Christian Klatt ◽  
James J. Moran ◽  
...  

ABSTRACT The upper green layer of the chlorophototrophic microbial mats associated with the alkaline siliceous hot springs of Yellowstone National Park consists of oxygenic cyanobacteria (Synechococcus spp.), anoxygenic Roseiflexus spp., and several other anoxygenic chlorophototrophs. Synechococcus spp. are believed to be the main fixers of inorganic carbon (Ci), but some evidence suggests that Roseiflexus spp. also contribute to inorganic carbon fixation during low-light, anoxic morning periods. Contributions of other phototrophic taxa have not been investigated. In order to follow the pathway of Ci incorporation into different taxa, mat samples were incubated with [13C]bicarbonate for 3 h during the early-morning, low-light anoxic period. Extracted proteins were treated with trypsin and analyzed by mass spectrometry, leading to peptide identifications and peptide isotopic profile signatures containing evidence of 13C label incorporation. A total of 25,483 peptides, corresponding to 7,221 proteins, were identified from spectral features and associated with mat taxa by comparison to metagenomic assembly sequences. A total of 1,417 peptides, derived from 720 proteins, were detectably labeled with 13C. Most 13C-labeled peptides were derived from proteins of Synechococcus spp. and Roseiflexus spp. Chaperones and proteins of carbohydrate metabolism were most abundantly labeled. Proteins involved in photosynthesis, Ci fixation, and N2 fixation were also labeled in Synechococcus spp. Importantly, most proteins of the 3-hydroxypropionate bi-cycle for Ci fixation in Roseiflexus spp. were labeled, establishing that members of this taxocene contribute to Ci fixation. Other taxa showed much lower [13C]bicarbonate incorporation. IMPORTANCE Yellowstone hot spring mats have been studied as natural models for understanding microbial community ecology and as modern analogs of stromatolites, the earliest community fossils on Earth. Stable-isotope probing of proteins (Pro-SIP) permitted short-term interrogation of the taxa that are involved in the important process of light-driven Ci fixation in this highly active community and will be useful in linking other metabolic processes to mat taxa. Here, evidence is presented that Roseiflexus spp., which use the 3-hydroxypropionate bi-cycle, are active in Ci fixation. Because this pathway imparts a lower degree of selection of isotopically heavy Ci than does the Calvin-Benson-Bassham cycle, the results suggest a mechanism to explain why the natural abundance of 13C in mat biomass is greater than expected if only the latter pathway were involved. Understanding how mat community members influence the 13C/12C ratios of mat biomass will help geochemists interpret the 13C/12C ratios of organic carbon in the fossil record.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 977
Author(s):  
Yota Suzuki ◽  
Hiroshi Asanuma

Japan has abundant hot spring resources, which, if used appropriately, could contribute to CO2 emission reduction and socioeconomic development. Thus, for the appropriate use of hot spring resources, it is necessary to estimate the detailed discharge mechanism and its surrounding hydraulic characteristics. In our study, a hot spring monitoring device was developed and installed in the Futamata hot spring to evaluate its discharge mechanism. Comparison between the measured values of the monitoring device and the amount of precipitation indicated that this hot spring shows two types of water quality change trends depending on the intensity of precipitation. However, this was a short-term variation that could not be detected by conventional methods. To address this limitation, we created a new discharge mechanism model for the Futamata hot spring based on these observations, which allowed for the continuous observation of hot spring water using a monitoring device and was effective in detecting short-term variations. As such observations contribute to estimating the hydraulic structure around the hot spring, they are important for appropriate use of hot spring resources.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaocheng Zhou ◽  
Yucong Yan ◽  
Wenya Fang ◽  
Wanli Wang ◽  
Hongyu Shi ◽  
...  

The gas compositions (He, H2, CO2, CH4, Ar and N2) and isotope ratios (3He/4He and δ13C) were yearly investigated from April 2010 to April 2019 at the Luojishan spring located in the proximity of the Zemuhe Fault, eastern Tibetan Plateau. The continuous automatic monitoring of hydrogen concentrations in Luojishan hot spring bubbling gas for the purpose of earthquake prediction requires the discrimination of seismic precursor anomalies. Helium isotope ratios (3He/4He) in the bubbling gas of hot springs varied from 0.05 to 0.18 Ra (Ra = 3He/4He = 1.39 × 10−6 in the air), with a maximum mantle-derived He up to 2.2% of the total He measured in the Luojishan hot spring (assuming R/Ra = 8.0 for mantle). This suggests that Zemuhe Fault might act as a conduit for crustal-derived fluid. N2 concentrations in the majority of the hot spring was ≥80 vol%, and δ13CCO2 values varied from −13.2 to −9.3‰ (vs.PDB). Hydrogen concentration time series display a complex temporal pattern reflecting a wide range of different physical processes. There were short-term (5–60 h) seismic precursor anomalies of hydrogen concentration before natural earthquake. The anthropogenically-induced earthquakes provoke only post-earthquake responses. The concentration of hydrogen in bubbling gas of the Luojishan hot spring is sensitive to increase of stress in the Xianshuihe-Xiaojiang fault system. Monitoring the hydrogen concentrations with automatic gas stations may be promising tool for unraveling earthquake mechanisms and for predicting earthquakes.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2638
Author(s):  
Chenhua Li ◽  
Xiaocheng Zhou ◽  
Yucong Yan ◽  
Shupei Ouyang ◽  
Fengli Liu

Significant hydrogeochemical changes may occur prior- and post-earthquakes. The Xiaojiang fault zone (XJF), situated in a highly deformed area of the southeastern margin of the Tibetan Plateau, is one of the active seismic areas. In this study, major and trace elements, and hydrogen and oxygen isotopes of 28 sites in hot springs along the XJF were investigated from June 2015 to April 2019. The meteoric water acts as the primary water source of the hot spring in the XJF and recharged elevations ranged from 1.8 to 4.5 km. Most of the hot spring water in the study area was immature water and the water–rock reaction degree was weak. The temperature range was inferred from an equation based on the SiO2 concentration and chemical geothermal modeling: 24.3~96.0 °C. The circulation depth for the springs was estimated from 0.45 to 4.04 km. We speculated the meteoric water firstly infiltrated underground and became heated by heat sources, and later circulated to the earth’s surface along the fault and fracture and finally constituted hot spring recharge. Additionally, a continuous monitoring was conducted every three days in the Xundian hot spring since April 2019, and in Panxi and Qujiang hot springs since June 2019. There were short-term (4–35 d) seismic precursor anomalies of the hydrochemical compositions prior to the Xundian ML4.2, Dongchuan ML4.2, and Shuangbai ML5.1 earthquakes. The epicentral distance of anomalous sites ranged from 19.1 to 192.8 km. The anomalous amplitudes were all over 2 times the anomaly threshold. The concentrations of Na+, Cl−, and SO42− are sensitive to the increase of stress in the XJF. Modeling on hydrology cycles of hot springs can provide a plausible physicochemical basis to explain geochemical anomalies in water and the hydrogeochemical anomaly may be useful in future earthquake prediction research of the study area.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


Author(s):  
M. O. Magnusson ◽  
D. G. Osborne ◽  
T. Shimoji ◽  
W. S. Kiser ◽  
W. A. Hawk

Short term experimental and clinical preservation of kidneys is presently best accomplished by hypothermic continuous pulsatile perfusion with cryoprecipitated and millipore filtered plasma. This study was undertaken to observe ultrastructural changes occurring during 24-hour preservation using the above mentioned method.A kidney was removed through a midline incision from healthy mongrel dogs under pentobarbital anesthesia. The kidneys were flushed immediately after removal with chilled electrolyte solution and placed on a LI-400 preservation system and perfused at 8-10°C. Serial kidney biopsies were obtained at 0-½-1-2-4-8-16 and 24 hours of preservation. All biopsies were prepared for electron microscopy. At the end of the preservation period the kidneys were autografted.


Author(s):  
D.N. Collins ◽  
J.N. Turner ◽  
K.O. Brosch ◽  
R.F. Seegal

Polychlorinated biphenyls (PCBs) are a ubiquitous class of environmental pollutants with toxic and hepatocellular effects, including accumulation of fat, proliferated smooth endoplasmic recticulum (SER), and concentric membrane arrays (CMAs) (1-3). The CMAs appear to be a membrane storage and degeneration organelle composed of a large number of concentric membrane layers usually surrounding one or more lipid droplets often with internalized membrane fragments (3). The present study documents liver alteration after a short term single dose exposure to PCBs with high chlorine content, and correlates them with reported animal weights and central nervous system (CNS) measures. In the brain PCB congeners were concentrated in particular regions (4) while catecholamine concentrations were decreased (4-6). Urinary levels of homovanillic acid a dopamine metabolite were evaluated (7).Wistar rats were gavaged with corn oil (6 controls), or with a 1:1 mixture of Aroclor 1254 and 1260 in corn oil at 500 or 1000 mg total PCB/kg (6 at each level).


Author(s):  
S.S. Poolsawat ◽  
C.A. Huerta ◽  
S.TY. Lae ◽  
G.A. Miranda

Introduction. Experimental induction of altered histology by chemical toxins is of particular importance if its outcome resembles histopathological phenomena. Hepatotoxic drugs and chemicals are agents that can be converted by the liver into various metabolites which consequently evoke toxic responses. Very often, these drugs are intentionally administered to resolve an illness unrelated to liver function. Because of hepatic detoxification, the resulting metabolites are suggested to be integrated into the macromolecular processes of liver function and cause an array of cellular and tissue alterations, such as increased cytoplasmic lysis, centrilobular and localized necroses, chronic inflammation and “foam cell” proliferation of the hepatic sinusoids (1-4).Most experimentally drug-induced toxicity studies have concentrated primarily on the hepatic response, frequently overlooking other physiological phenomena which are directly related to liver function. Categorically, many studies have been short-term effect investigations which seldom have followed up the complications to other tissues and organs when the liver has failed to function normally.


Sign in / Sign up

Export Citation Format

Share Document