scholarly journals Bradykinin potentiates insulin-stimulated glucose uptake and enhances insulin signal through the bradykinin B2 receptor in dog skeletal muscle and rat L6 myoblasts

1998 ◽  
pp. 344-352 ◽  
Author(s):  
T Miyata ◽  
T Taguchi ◽  
M Uehara ◽  
S Isami ◽  
H Kishikawa ◽  
...  

Previously we demonstrated that bradykinin infusion could increase glucose uptake into dog peripheral tissues, and that bradykinin could potentiate insulin-induced glucose uptake through glucose transporter 4 (GLUT4) translocation in dog adipocytes. However, skeletal muscle is the predominant tissue for insulin-mediated glucose disposal. The aim of this study was to determine how bradykinin affected insulin-stimulated glucose uptake in dog skeletal muscle and myotubes transformed from rat L6 myoblasts. The bradykinin receptor binding studies revealed that dog skeletal muscle and rat L6 myoblasts possessed significant numbers of bradykinin receptors (Kd = 88 and 76 pmol/l, Bmax = 82.5 and 20 fmol/mg protein respectively). An RT-PCR (reverse transcriptase-polymerase chain reaction) amplification showed mRNA specific for bradykinin B2 receptor in both cells. Bradykinin significantly increased 2-deoxyglucose uptake in isolated muscle and L6 myoblasts in the presence of insulin (10(-7) mol/l) in a dose-dependent manner, but not in the absence of insulin. Bradykinin also enhanced insulin-stimulated GLUT4 translocation, and insulin-induced phosphorylation of insulin receptor beta subunit and insulin receptor substrate-1 (IRS-1) without affecting the binding affinities or numbers of cell surface insulin receptors in both cells. It is concluded that bradykinin could potentiate the insulin-induced glucose uptake through GLUT4 translocation in dog skeletal muscle and rat L6 myoblasts. This effect could be explained by the potency of bradykinin to upregulate the insulin receptor tyrosine kinase activity which stimulates phosphorylation of IRS-1, followed by an increase in GLUT4 translocation.

2003 ◽  
Vol 285 (1) ◽  
pp. E106-E115 ◽  
Author(s):  
Byoung Moon ◽  
Jamie Jun-Mae Kwan ◽  
Noreen Duddy ◽  
Gary Sweeney ◽  
Najma Begum

Elevated levels of resistin have been proposed to cause insulin resistance and therefore may serve as a link between obesity and type 2 diabetes. However, its role in skeletal muscle metabolism is unknown. In this study, we examined the effect of resistin on insulin-stimulated glucose uptake and the upstream insulin-signaling components in L6 rat skeletal muscle cells that were either incubated with recombinant resistin or stably transfected with a vector containing the myc-tagged mouse resistin gene. Transfected clones expressed intracellular resistin, which was released in the medium. Incubation with recombinant resistin resulted in a dose-dependent inhibition of insulin-stimulated 2-deoxyglucose (2-DG) uptake. The inhibitory effect of resistin on insulin-stimulated 2-DG uptake was not the result of impaired GLUT4 translocation to the plasma membrane. Furthermore, resistin did not alter the insulin receptor (IR) content and its phosphorylation, nor did it affect insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation, its association with the p85 subunit of phosphatidylinositol (PI) 3-kinase, or IRS-1-associated PI 3-kinase enzymatic activity. Insulin-stimulated phosphorylation of Akt/protein kinase B-α, one of the downstream targets of PI 3-kinase and p38 MAPK phosphorylation, was also not affected by resistin. Expression of resistin also inhibited insulin-stimulated 2-DG uptake when compared with cells expressing the empty vector (L6Neo) without affecting GLUT4 translocation, GLUT1 content, and IRS-1/PI 3-kinase signaling. We conclude that resistin does not alter IR signaling but does affect insulin-stimulated glucose uptake, presumably by decreasing the intrinsic activity of cell surface glucose transporters.


1993 ◽  
Vol 139 (3) ◽  
pp. 479-486 ◽  
Author(s):  
H. Abe ◽  
Y. Minokoshi ◽  
T. Shimazu

ABSTRACT The effects of the β3-agonist, BRL35135A, on glucose uptake in the peripheral tissues of the rat, including skeletal muscle, were studied using the 2-[3H]deoxyglucose method in anaesthetized adult animals. Intravenous infusion of the β3-agonist dose-dependently increased the rate constant of glucose uptake in three types of skeletal muscle, brown adipose tissue, white adipose tissue, heart and diaphragm, but not in the brain, spleen or lung. Although infusion of the β3-agonist did not change the plasma concentration of glucose appreciably, it caused an increase in the plasma concentration of insulin when given at more than 25 μg/kg per h. To ascertain whether the effect of the β3-agonist on glucose uptake in skeletal muscle is mediated by insulin, glucose uptake into soleus muscle isolated from young rats was also measured in vitro using different concentrations of the β3-agonist. The β3-agonist BRL37344 (an active metabolite of BRL35135A) significantly increased glucose transport in a dose-dependent manner, with maximum stimulation at 100 pmol/l. These results demonstrate that glucose uptake in skeletal muscle can be enhanced independently of the action of insulin, probably through the mediation of β3-adrenoceptors present in the tissue. Journal of Endocrinology (1993) 139, 479–486


2008 ◽  
Vol 294 (3) ◽  
pp. H1266-H1273 ◽  
Author(s):  
Mohamed A. Omar ◽  
Heather Fraser ◽  
Alexander S. Clanachan

Alterations in myocardial glucose metabolism are a key determinant of ischemia-induced depression of left ventricular mechanical function. Since myocardial glycogen is an important source of endogenous glucose, we compared the effects of ischemia on glucose uptake and utilization in isolated working rat hearts in which glycogen content was either replete (G replete, 114 μmol/g dry wt) or partially depleted (G depleted, 71 μmol/g dry wt). The effects of low-flow ischemia (LFI, 0.5 ml/min) on glucose uptake, glycogen turnover (glycogenolysis and glycogen synthesis), glycolysis, adenosine 5′-monophosphate-activated protein kinase (AMPK) activity, and GLUT4 translocation were measured. Relative to preischemic values, LFI caused a time-dependent reduction in glycogen content in both G-replete and G-depleted groups due to an acceleration of glycogenolysis (by 12-fold and 6-fold, respectively). In G-replete hearts, LFI (15 min) decreased glucose uptake (by 59%) and did not affect GLUT4 translocation. In G-depleted hearts, LFI also decreased initially glucose uptake (by 90%) and glycogen synthesis, but after 15 min, when glycogenolysis slowed due to exhaustion of glycogen content, glucose uptake increased (by 31%) in association with an increase in GLUT4 translocation. After 60 min of LFI, glucose uptake, glycogenolysis, and glycolysis recovered to near-preischemic values in both groups. LFI increased AMPK activity in a time-dependent manner in both groups (by 6-fold and 4-fold, respectively). Thus, when glycogen stores are replete before ischemia, ischemia-induced AMPK activation is not sufficient to increase glucose uptake. Under these conditions, an acceleration of glycogen degradation provides sufficient endogenous substrate for glycolysis during ischemia.


2015 ◽  
Vol 40 (4) ◽  
pp. 407-413 ◽  
Author(s):  
Madina Naimi ◽  
Theodoros Tsakiridis ◽  
Theocharis C. Stamatatos ◽  
Dimitris I. Alexandropoulos ◽  
Evangelia Tsiani

Stimulation of the energy sensor AMP-activated kinase (AMPK) has been viewed as a targeted approach to increase glucose uptake by skeletal muscle and control blood glucose homeostasis. Rosemary extract (RE) has been reported to activate AMPK in hepatocytes and reduce blood glucose levels in vivo but its effects on skeletal muscle are not known. In the present study, we examined the effects of RE and the mechanism of regulation of glucose uptake in muscle cells. RE stimulated glucose uptake in L6 myotubes in a dose- and time-dependent manner. Maximum stimulation was seen with 5 μg/mL of RE for 4 h (184% ± 5.07% of control, p < 0.001), a response comparable to maximum insulin (207% ± 5.26%, p < 0.001) and metformin (216% ± 8.77%, p < 0.001) stimulation. RE did not affect insulin receptor substrate 1 and Akt phosphorylation but significantly increased AMPK and acetyl-CoA carboxylase phosphorylation. Furthermore, the RE-stimulated glucose uptake was significantly reduced by the AMPK inhibitor compound C, but remained unchanged by the PI3K inhibitor, wortmannin. RE did not affect GLUT4 or GLUT1 glucose transporter translocation in contrast with a significant translocation of both transporters seen with insulin or metformin treatment. Our study is the first to show a direct effect of RE on muscle cell glucose uptake by a mechanism that involves AMPK activation.


2012 ◽  
Vol 1 ◽  
Author(s):  
Yoko Yamashita ◽  
Masaaki Okabe ◽  
Midori Natsume ◽  
Hitoshi Ashida

AbstractHyperglycaemia and insulin resistance are associated with the increased risk of the metabolic syndrome and other severe health problems. The insulin-sensitive GLUT4 regulates glucose homoeostasis in skeletal muscle and adipose tissue. In this study, we investigated whether cacao liquor procyanidin (CLPr) extract, which contains epicatechin, catechin and other procyanidins, improves glucose tolerance by promoting GLUT4 translocation and enhances glucose uptake in muscle cells. Our results demonstrated that CLPr increased glucose uptake in a dose-dependent manner and promoted GLUT4 translocation to the plasma membrane of L6 myotubes. Oral administration of a single dose of CLPr suppressed the hyperglycaemic response after carbohydrate ingestion, which was accompanied by enhanced GLUT4 translocation in ICR mice. These effects of CLPr were independent of α-glucosidase inhibition in the small intestine. CLPr also promoted GLUT4 translocation in skeletal muscle of C57BL/6 mice fed a CLPr-supplemented diet for 7 d. These results indicate that CLPr is a beneficial food material for improvement of glucose tolerance by promoting GLUT4 translocation to the plasma membrane of skeletal muscle.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3129
Author(s):  
Jyotsana Pandey ◽  
Kapil Dev ◽  
Sourav Chattopadhyay ◽  
Sleman Kadan ◽  
Tanuj Sharma ◽  
...  

Estrogenic molecules have been reported to regulate glucose homeostasis and may be beneficial for diabetes management. Here, we investigated the estrogenic effect of β-sitosterol-3-O-D-glucopyranoside (BSD), isolated from the fruits of Cupressus sempervirens and monitored its ability to regulate glucose utilization in skeletal muscle cells. BSD stimulated ERE-mediated luciferase activity in both ERα and ERβ-ERE luc expression system with greater response through ERβ in HEK-293T cells, and induced the expression of estrogen-regulated genes in estrogen responsive MCF-7 cells. In silico docking and molecular interaction studies revealed the affinity and interaction of BSD with ERβ through hydrophobic interaction and hydrogen bond pairing. Furthermore, prolonged exposure of L6-GLUT4myc myotubes to BSD raised the glucose uptake under basal conditions without affecting the insulin-stimulated glucose uptake, the effect associated with enhanced translocation of GLUT4 to the cell periphery. The BSD-mediated biological response to increase GLUT4 translocation was obliterated by PI-3-K inhibitor wortmannin, and BSD significantly increased the phosphorylation of AKT (Ser-473). Moreover, BSD-induced GLUT4 translocation was prevented in the presence of fulvestrant. Our findings reveal the estrogenic activity of BSD to stimulate glucose utilization in skeletal muscle cells via PI-3K/AKT-dependent mechanism.


2008 ◽  
Vol 198 (3) ◽  
pp. 561-569 ◽  
Author(s):  
Wenbin Shang ◽  
Ying Yang ◽  
Libin Zhou ◽  
Boren Jiang ◽  
Hua Jin ◽  
...  

A series of clinical trials and animal experiments have demonstrated that ginseng and its major active constituent, ginsenosides, possess glucose-lowering action. In our previous study, ginsenoside Rb1 has been shown to regulate peroxisome proliferator-activated receptor γ activity to facilitate adipogenesis of 3T3-L1 cells. However, the effect of Rb1 on glucose transport in insulin-sensitive cells and its molecular mechanism need further elucidation. In this study, Rb1 significantly stimulated basal and insulin-mediated glucose uptake in a time- and dose-dependent manner in 3T3-L1 adipocytes and C2C12 myotubes; the maximal effect was achieved at a concentration of 1 μM and a time of 3 h. In adipocytes, Rb1 promoted GLUT1 and GLUT4 translocations to the cell surface, which was examined by analyzing their distribution in subcellular membrane fractions, and enhanced translocation of GLUT4 was confirmed using the transfection of GLUT4-green fluorescence protein in Chinese Hamster Ovary cells. Meanwhile, Rb1 increased the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB), and stimulated phosphatidylinositol 3-kinase (PI3K) activity in the absence of the activation of the insulin receptor. Rb1-induced glucose uptake as well as GLUT1 and GLUT4 translocations was inhibited by the PI3K inhibitor. These results suggest that ginsenoside Rb1 stimulates glucose transport in insulin-sensitive cells by promoting translocations of GLUT1 and GLUT4 by partially activating the insulin signaling pathway. These findings are useful in understanding the hypoglycemic and anti-diabetic properties of ginseng and ginsenosides.


Author(s):  
Chih-Chieh Chen ◽  
Chong-Kuei Lii ◽  
Chia-Wen Lo ◽  
Yi-Hsueh Lin ◽  
Ya-Chen Yang ◽  
...  

14-Deoxy-11,12-didehydroandrographolide (deAND), a bioactive component of Andrographis paniculata, has antidiabetic activity. AMP-activated protein kinase (AMPK) regulates glucose transport and ameliorates insulin resistance. The aim of the present study was to investigate whether activation of AMPK is involved in the mechanism by which deAND ameliorates insulin resistance in muscles. deAND amounts up to 40 [Formula: see text]M dose-dependently activated phosphorylation of AMPK[Formula: see text] and TBC1D1 in C2C12 myotubes. In addition, deAND significantly activated phosphorylation of LKB1 at 6 h after treatment, and this activation was maintained up to 48 h. deAND increased glucose uptake at 18 h after treatment, and this increase was time dependent up to 72 h. Compound C, an inhibitor of AMPK, suppressed deAND-induced phosphorylation of AMPK[Formula: see text] and TBC1D1 and reversed the effect on glucose uptake. In addition, the expression of GLUT4 mRNA and protein in C2C12 myotubes was up-regulated by deAND in a time-dependent manner. Promotion of GLUT4 gene transcription was verified by a pGL3-GLUT4 (837 bp) reporter assay. deAND also increased the nuclear translocation of MEF-2A and PPAR[Formula: see text]. After 16 weeks of feeding, the high-fat diet (HFD) inhibited phosphorylation of AMPK[Formula: see text] and TBC1D1 in skeletal muscle of obese C57BL/6JNarl mice, and deactivation of AMPK[Formula: see text] and TBC1D1 by the HFD was abolished by deAND supplementation. Supplementation with deAND significantly promoted membrane translocation of GLUT4 compared with the HFD group. Supplementation also significantly increased GLUT4 mRNA and protein expression in skeletal muscle compared with the HFD group. The hypoglycemic effects of deAND are likely associated with activation of the LKB1/AMPK[Formula: see text]/TBC1D1/GLUT4 signaling pathway and stimulation of MEF-2A- and PPAR[Formula: see text]-dependent GLUT4 gene expression, which account for the glucose uptake into skeletal muscle and lower blood glucose levels.


2001 ◽  
Vol 280 (5) ◽  
pp. E677-E684 ◽  
Author(s):  
Nicolas Musi ◽  
Tatsuya Hayashi ◽  
Nobuharu Fujii ◽  
Michael F. Hirshman ◽  
Lee A. Witters ◽  
...  

The AMP-activated protein kinase (AMPK) has been hypothesized to mediate contraction and 5-aminoimidazole-4-carboxamide 1-β-d-ribonucleoside (AICAR)-induced increases in glucose uptake in skeletal muscle. The purpose of the current study was to determine whether treadmill exercise and isolated muscle contractions in rat skeletal muscle increase the activity of the AMPKα1 and AMPKα2 catalytic subunits in a dose-dependent manner and to evaluate the effects of the putative AMPK inhibitors adenine 9-β-d-arabinofuranoside (ara-A), 8-bromo-AMP, and iodotubercidin on AMPK activity and 3- O-methyl-d-glucose (3-MG) uptake. There were dose-dependent increases in AMPKα2 activity and 3-MG uptake in rat epitrochlearis muscles with treadmill running exercise but no effect of exercise on AMPKα1 activity. Tetanic contractions of isolated epitrochlearis muscles in vitro significantly increased the activity of both AMPK isoforms in a dose-dependent manner and at a similar rate compared with increases in 3-MG uptake. In isolated muscles, the putative AMPK inhibitors ara-A, 8-bromo-AMP, and iodotubercidin fully inhibited AICAR-stimulated AMPKα2 activity and 3-MG uptake but had little effect on AMPKα1 activity. In contrast, these compounds had absent or minimal effects on contraction-stimulated AMPKα1 and -α2 activity and 3-MG uptake. Although the AMPKα1 and -α2 isoforms are activated during tetanic muscle contractions in vitro, in fast-glycolytic fibers, the activation of AMPKα2-containing complexes may be more important in regulating exercise-mediated skeletal muscle metabolism in vivo. Development of new compounds will be required to study contraction regulation of AMPK by pharmacological inhibition.


Sign in / Sign up

Export Citation Format

Share Document