Does the type of activity “break” from prolonged sitting differentially impact on postprandial blood glucose reductions? An exploratory analysis

2017 ◽  
Vol 42 (8) ◽  
pp. 897-900 ◽  
Author(s):  
Robyn N. Larsen ◽  
Paddy C. Dempsey ◽  
Francis Dillon ◽  
Megan Grace ◽  
Bronwyn A. Kingwell ◽  
...  

Frequent breaks in prolonged sitting are associated beneficially with glycaemic control. However, the contribution of energy expenditure to this relationship has not been well characterised. In this exploratory analysis, data from 3 laboratory trials that standardised test meals, cohort characteristics (overweight/obese, sedentary), and break frequency and duration were pooled. Higher energy expenditures of different types of breaks (standing, light- or moderate-intensity walking) were associated with lower postprandial glucose and insulin responses in a dose-dependent manner.

1995 ◽  
Vol 310 (1) ◽  
pp. 215-220 ◽  
Author(s):  
O Alcázar ◽  
E Giné ◽  
Z Qiu-Yue ◽  
J Tamarit-Rodríguez

D-Glyceraldehyde's capacity to mimic the effect of D-glucose on insulin secretion has not yet been sufficiently substantiated. It has been recently proposed, however, that they might act through different mechanisms in insulin-secreting tumoral cells. Therefore, we have performed a dose-related study of both the secretory and metabolic effects of D-glyceraldehyde on islets, which have been compared with those produced by D-glucose. D-Glyceraldehyde's capacity to stimulate secretion was paralleled in a dose-dependent manner by its rate of oxidation to 14CO2. Partial inhibition of D-glyceraldehyde oxidation by beta-iodoacetamide resulted in a proportional decrease in the secretory response. L-Glyceraldehyde, which was apparently very poorly oxidized by islets, did not stimulate secretion. The ratio of the maximum insulin responses D-glyceraldehyde and D-glucose (57%) correlated with the ratio of their respective maximum rates of oxidation (68%). At sub-maximal concentrations there was a potentiation of the secretagogue effects of the hexose by the triose, which was not apparent at a maximum effective dose of glucose. It is concluded that D-glyceraldehyde mimics the secretory effect of glucose because, similarly to the hexose, it is metabolized through islet aerobic glycolysis. The lower potency of D-glyceraldehyde as an insulin secretagogue than D-glucose is determined by the lower capacity of islets to oxidize the triose compared with the hexose. D-Glyceraldehyde, unlike D-glucose, is metabolized in islets to D-lactate. Alternative routes for the metabolism of D-glyceraldehyde might explain some of the secretagogue differences between the triose and the hexose.


Author(s):  
Jenna B. Gillen ◽  
Stephanie Estafanos ◽  
Alexa Govette

Type 2 diabetes (T2D) is a rapidly growing yet largely preventable chronic disease. Exaggerated increases in blood glucose concentration following meals is a primary contributor to many long-term complications of the disease that decrease quality of life and reduce lifespan. Adverse health consequences also manifest years prior to the development of T2D due to underlying insulin resistance and exaggerated postprandial concentrations of the glucose-lowering hormone insulin. Postprandial hyperglycemic and hyperinsulinemic excursions can be improved by exercise, which contributes to the well-established benefits of physical activity for the prevention and treatment of T2D. The aim of this review is to describe the postprandial dysmetabolism that occurs in individuals at risk for and with T2D, and highlight how acute and chronic exercise can lower postprandial glucose and insulin excursions. In addition to describing the effects of traditional moderate-intensity continuous exercise on glycemic control, we highlight other forms of activity including low-intensity walking, high-intensity interval exercise, and resistance training. In an effort to improve knowledge translation and implementation of exercise for maximal glycemic benefits, we also describe how timing of exercise around meals and post-exercise nutrition can modify acute and chronic effects of exercise on glycemic control and insulin sensitivity. Novelty bullets • Exaggerated postprandial blood glucose and insulin excursions are associated with disease risk • Both a single session and repeated sessions of exercise improve postprandial glycemic control in individuals with and without T2D • The glycemic benefits of exercise can be enhanced by considering the timing and macronutrient composition of meals around exercise


Author(s):  
Michael J. Wheeler ◽  
Daniel J. Green ◽  
Ester Cerin ◽  
Kathryn A. Ellis ◽  
Ilkka Heinonen ◽  
...  

Abstract Background Postprandial glucose, insulin, and triglyceride metabolism is impaired by prolonged sitting, but enhanced by exercise. The aim of this study was to assess the effects of a continuous exercise bout with and without intermittent active interruptions to prolonged sitting on postprandial glucose, insulin, and triglycerides. Methods Sedentary adults who were overweight to obese (n = 67; mean age 67 yr SD ± 7; BMI 31.2 kg∙m− 2 SD ± 4.1), completed three conditions: SIT: uninterrupted sitting (8-h, control); EX+SIT: sitting (1-h), moderate-intensity walking (30-min), uninterrupted sitting (6.5-h); EX+BR: sitting (1-h), moderate-intensity walking (30- min), sitting interrupted every 30-min with 3-min of light-intensity walking (6.5 h). Participants consumed standardized breakfast and lunch meals and blood was sampled at 13 time-points. Results When compared to SIT, EX+SIT increased total area under the curve (tAUC) for glucose by 2% [0.1–4.1%] and EX+BR by 3% [0.6–4.7%] (all p < 0.05). Compared to SIT, EX+SIT reduced insulin and insulin:glucose ratio tAUC by 18% [11–22%] and 21% [8–33%], respectively; and EX+BR reduced values by 25% [19–31%] and 28% [15–38%], respectively (all p < 0.001 vs SIT, all p < 0.05 EX+SIT-vs-EX+BR). Compared to SIT, EX+BR reduced triglyceride tAUC by 6% [1–10%] (p = 0.01 vs SIT), and compared to EX+SIT, EX+BR reduced this value by 5% [0.1–8.8%] (p = 0.047 vs EX+SIT). The magnitude of reduction in insulin tAUC from SIT-to-EX+BR was greater in those with increased basal insulin resistance. No reduction in triglyceride tAUC from SIT-to-EX+BR was apparent in those with high fasting triglycerides. Conclusions Additional reductions in postprandial insulin-glucose dynamics and triglycerides may be achieved by combining exercise with breaks in sitting. Relative to uninterrupted sitting, this strategy may reduce postprandial insulin more in those with high basal insulin resistance, but those with high fasting triglycerides may be resistant to such intervention-induced reductions in triglycerides. Trial registration Australia New Zealand Clinical Trials Registry (ACTRN12614000737639).


2021 ◽  
Author(s):  
Ashleigh R. Homer ◽  
Frances C. Taylor ◽  
Paddy C. Dempsey ◽  
Michael J. Wheeler ◽  
Parneet Sethi ◽  
...  

<b>Purpose:</b> To determine whether interrupting sitting with brief bouts of simple resistance activities (SRAs) at different frequencies improves postprandial glucose, insulin and triglycerides in adults with medication-controlled type 2 diabetes (T2D). <p><b>Methods:</b> Participants [n=23, 10 females, Age: 62±8 y (mean±SD), BMI: 32.7 ± 3.5 kg<sup>.</sup>m<sup>-2</sup>] completed a three-armed randomized crossover trial (6-14 day washout): sitting uninterrupted for 7 h (SIT); sitting with 3-minute SRAs (half-squats, calf raises, gluteal contractions, and knee raises) every 30 minutes (SRA3); and, sitting with 6-minute SRAs every 60 minutes (SRA6). Net incremental areas under the curve (iAUC<sub>net</sub>) for glucose, insulin, and triglycerides were compared between conditions.</p> <p><b>Results:</b> <a>Glucose and insulin 7 h iAUC<sub>net </sub>were attenuated significantly during SRA6 (glucose 17.0 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 12.5, 21.4; insulin 1229 pmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 982, 1538) when compared to SIT (glucose 21.4 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 16.9, 25.8; insulin 1411 pmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 1128, 1767; <i>P</i> < 0.05), and compared to SRA3 ( for glucose only; 22.1 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 17.7, 26.6; <i>P </i>= 0.01) No significant differences in glucose or insulin iAUC<sub>net</sub> were observed comparing SRA3 and SIT. There was no statistically significant effect of condition on triglyceride iAUC<sub>net</sub>. </a></p> <p><b>Conclusion:</b> In adults with medication-controlled T2D, interrupting prolonged sitting with 6-minute SRAs every 60 minutes reduced postprandial glucose and insulin responses. Other frequencies of interruptions and potential longer-term benefits require examination to clarify clinical relevance. </p>


2021 ◽  
Author(s):  
Ashleigh R. Homer ◽  
Frances C. Taylor ◽  
Paddy C. Dempsey ◽  
Michael J. Wheeler ◽  
Parneet Sethi ◽  
...  

<b>Purpose:</b> To determine whether interrupting sitting with brief bouts of simple resistance activities (SRAs) at different frequencies improves postprandial glucose, insulin and triglycerides in adults with medication-controlled type 2 diabetes (T2D). <p><b>Methods:</b> Participants [n=23, 10 females, Age: 62±8 y (mean±SD), BMI: 32.7 ± 3.5 kg<sup>.</sup>m<sup>-2</sup>] completed a three-armed randomized crossover trial (6-14 day washout): sitting uninterrupted for 7 h (SIT); sitting with 3-minute SRAs (half-squats, calf raises, gluteal contractions, and knee raises) every 30 minutes (SRA3); and, sitting with 6-minute SRAs every 60 minutes (SRA6). Net incremental areas under the curve (iAUC<sub>net</sub>) for glucose, insulin, and triglycerides were compared between conditions.</p> <p><b>Results:</b> <a>Glucose and insulin 7 h iAUC<sub>net </sub>were attenuated significantly during SRA6 (glucose 17.0 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 12.5, 21.4; insulin 1229 pmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 982, 1538) when compared to SIT (glucose 21.4 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 16.9, 25.8; insulin 1411 pmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 1128, 1767; <i>P</i> < 0.05), and compared to SRA3 ( for glucose only; 22.1 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 17.7, 26.6; <i>P </i>= 0.01) No significant differences in glucose or insulin iAUC<sub>net</sub> were observed comparing SRA3 and SIT. There was no statistically significant effect of condition on triglyceride iAUC<sub>net</sub>. </a></p> <p><b>Conclusion:</b> In adults with medication-controlled T2D, interrupting prolonged sitting with 6-minute SRAs every 60 minutes reduced postprandial glucose and insulin responses. Other frequencies of interruptions and potential longer-term benefits require examination to clarify clinical relevance. </p>


Author(s):  
Waris Wongpipit ◽  
Xiaoyuan Zhang ◽  
Masashi Miyashita ◽  
Stephen Heung-Sang Wong

Abstract Context Prolonged sitting elevates postprandial metabolic markers, resulting in increased risks of cardiovascular diseases and type 2 diabetes. Interrupting prolonged sitting may reduce these risks. However, more information is needed to understand the patterns of interrupting prolonged sitting to obtain metabolic health benefits. Objective This study examined the effects of interrupting prolonged sitting with different intensities and durations of walking with an equivalent energy expenditure on postprandial metabolic responses in young Chinese men with central obesity. Design A randomized crossover experimental trial was conducted. Setting Participants underwent three 6-hour experiments with a 7-day washout period between each experiment: prolonged sitting, 3 min of light-intensity walking every 30 minutes, and 1.5 minutes of moderate-intensity walking every 30 minutes. Participants and Samples Baseline (fasting) and 6-hour postprandial metabolic glucose and lipid levels were analyzed among 18 young Chinese men with central obesity. Main Outcome Measures Generalized estimating equations (adjusted for the potential confounders explaining residual outcome variance (body mass index) and age), trial order, preprandial values, and lead-in activity) were used, and the incremental areas under the curve (iAUC) of each outcome were compared between prolonged sitting and interrupted prolonged sitting conditions. Results Compared with prolonged sitting, both interrupting prolonged sitting conditions reduced the iAUCs for glucose (P &lt; .05) but not insulin, C-peptide, triglycerides, or nonesterified fatty acids. Conclusions Both conditions of interrupted prolonged sitting reduced postprandial glucose concentrations in young Chinese men with central obesity when the energy expenditure was equivalent.


Diabetes Care ◽  
2012 ◽  
Vol 35 (5) ◽  
pp. 976-983 ◽  
Author(s):  
D. W. Dunstan ◽  
B. A. Kingwell ◽  
R. Larsen ◽  
G. N. Healy ◽  
E. Cerin ◽  
...  

2021 ◽  
Author(s):  
Ashleigh R. Homer ◽  
Frances C. Taylor ◽  
Paddy C. Dempsey ◽  
Michael J. Wheeler ◽  
Parneet Sethi ◽  
...  

<b>Purpose:</b> To determine whether interrupting sitting with brief bouts of simple resistance activities (SRAs) at different frequencies improves postprandial glucose, insulin and triglycerides in adults with medication-controlled type 2 diabetes (T2D). <p><b>Methods:</b> Participants [n=23, 10 females, Age: 62±8 y (mean±SD), BMI: 32.7 ± 3.5 kg<sup>.</sup>m<sup>-2</sup>] completed a three-armed randomized crossover trial (6-14 day washout): sitting uninterrupted for 7 h (SIT); sitting with 3-minute SRAs (half-squats, calf raises, gluteal contractions, and knee raises) every 30 minutes (SRA3); and, sitting with 6-minute SRAs every 60 minutes (SRA6). Net incremental areas under the curve (iAUC<sub>net</sub>) for glucose, insulin, and triglycerides were compared between conditions.</p> <p><b>Results:</b> <a>Glucose and insulin 7 h iAUC<sub>net </sub>were attenuated significantly during SRA6 (glucose 17.0 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 12.5, 21.4; insulin 1229 pmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 982, 1538) when compared to SIT (glucose 21.4 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 16.9, 25.8; insulin 1411 pmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 1128, 1767; <i>P</i> < 0.05), and compared to SRA3 ( for glucose only; 22.1 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 17.7, 26.6; <i>P </i>= 0.01) No significant differences in glucose or insulin iAUC<sub>net</sub> were observed comparing SRA3 and SIT. There was no statistically significant effect of condition on triglyceride iAUC<sub>net</sub>. </a></p> <p><b>Conclusion:</b> In adults with medication-controlled T2D, interrupting prolonged sitting with 6-minute SRAs every 60 minutes reduced postprandial glucose and insulin responses. Other frequencies of interruptions and potential longer-term benefits require examination to clarify clinical relevance. </p>


1990 ◽  
Vol 63 (03) ◽  
pp. 505-509 ◽  
Author(s):  
Thomas Mätzsch ◽  
David Bergqvist ◽  
Ulla Hedner ◽  
Bo Nilsson ◽  
Per Østergaar

SummaryA comparison between the effect of low molecular weight heparin (LMWH) and unfragmented heparin (UH) on induction of osteoporosis was made in 60 rats treated with either UH (2 IU/ g b w), LMWH in 2 doses (2 Xal U/g or 0.4 Xal U/g) or placebo (saline) for 34 days. Studied variables were: bone mineral mass in femora; fragility of humera; zinc and calcium levels in serum and bone ash and albumin in plasma. A significant reduction in bone mineral mass was found in all heparin-treated rats. There was no difference between UH and LMWH in this respect. The effect was dose-dependent in LMWH-treated animals. The zinc contents in bone ash were decreased in all heparin-treated rats as compared with controls. No recognizable pattern was seen in alterations of zinc or calcium in serum. The fragility of the humera, tested as breaking strength did not differ between treatment groups and controls. In conclusion, if dosed according to similar factor Xa inhibitory activities, LMWH induces osteoporosis to the same extent as UH and in a dose-dependent manner. The zinc content in bone ash was decreased after heparin treatment, irrespective of type of heparin given.


Sign in / Sign up

Export Citation Format

Share Document