scholarly journals Methane and carbon dioxide emissions from thermokarst lakes on mineral soils

2018 ◽  
Vol 4 (4) ◽  
pp. 584-604 ◽  
Author(s):  
Alex Matveev ◽  
Isabelle Laurion ◽  
Warwick F. Vincent

Thermokarst lakes are known to emit methane (CH4) and carbon dioxide (CO2), but little attention has been given to those formed from the thawing and collapse of lithalsas, ice-rich mineral soil mounds that occur in permafrost landscapes. The present study was undertaken to assess greenhouse gas stocks and fluxes in eight lithalsa lakes across a 200 km gradient of permafrost degradation in subarctic Québec. The northernmost lakes varied in their surface-water CO2 content from below to above saturation, but the southern lakes in this gradient had much higher surface concentrations that were well above air-equilibrium. Surface-water CH4 concentrations were at least an order of magnitude above air-equilibrium values at all sites, and the diffusive fluxes of both gases increased from north to south. Methane oxidation in the surface waters from a northern lake was only 10% of the emission rate, but at the southern end it was around 60% of the efflux to the atmosphere, indicating that methanotrophy can play a substantive role in reducing net emissions. Overall, our observations show that lithalsa lakes can begin emitting CH4 and CO2 soon after they form, with effluxes of both gases that persist and increase as the permafrost continues to warm and erode.

2017 ◽  
pp. 780-787
Author(s):  
Torleif Bramryd ◽  
Michael Johansson

Provided that produced biogas is effectively collected, landfills are important sinks for organic carbon compensating for emissions of CO2 from burning of fossil fuels. Sequestrating of long-lived organic carbon in the landfill itself is the most pronounced factor, but also other processes during landfill management will increase the capture and binding of CO2.. Compost produced in connection to the landfills and applied as soil improvement, is another important sink for organic carbon.The landfills in the World have been estimated to accumulate around 100 x 106 metric tons of C. Normally about 25-40 percent of the total carbon content in the waste can be converted into biogas in traditional landfills. During landfilling most of the organic carbon in fossil derived products, like plastics, synthetic rubber, textiles and other synthetic materials, As these products take part in the methane gas production, the landfill gas (biogas) can be regarded as a true biofuel. In contrast to incineration, high moisture content in the waste will not decrease the yield of energy per ton of waste. In a reactor landfill treating approximately 100 000 tons of waste per year, a longlived organic fraction corresponding to about 45 000 metric tons of carbon dioxide is longterm accumulated each year. This compensates for the annual carbon dioxide emissions from about 15 000 – 20 000 cars, provided that each one runs 15 000 km per year with fossil fuel. The technique for effective collection of landfill gas, and new techniques to upgrade and liquefy the biogas, have decreased the risk for emissions to the atmosphere. Modern bioreactor landfills have been estimated to have less than 10% diffuse biogas emissions to the atmosphere. Also in Sweden (Helsingborg), plants are built to convert landfill gas to upgraded, liquefied motor fuel. This will lead to strongly reduced diffuse emissions of landfill gas to the atmosphere. The utilization of leachates as forest fertilizer results in an improved biomass production and increased accumulation of soil organic matter. Increased tree and field layer productivity also means that the potential for water evaporation (eg. evapotranspiration) increase, reducing the costs for waste-water treatment or the risk for diffuse ground water pollution. Also in the mineral soil, increased long-lived fractions of humus normally are found. This should be added to the carbon accumulating effect of the landfill itself, where long-lived organic matter, mainly derived from lignin and from fossil fractions as plastics and synthetic textiles is long-term accumulated. In this respect the landfill system has similar effects compared to natural peatlands and lake and sea sediments, Ifproduced biogas is collected effectively, the landfill thus can be an important factor to counteract the “green-house effect” and climate change.


2019 ◽  
Vol 10 (3) ◽  
pp. 152-158
Author(s):  
Bambang Hero Saharjo ◽  
Citra Septriantri Putri

Forest and land fires are phenomena that often occur in Indonesia and have a negative impact on life. One of them is carbon dioxide gas emissions which influences global climate change. Therefore, information is needed regarding the estimation of carbon dioxide emissions in fire-prone areas, one of them is West Kalimantan, as a consideration in the activity to control forest and land fires. The method that is applied in this research is by estimating the area of the burned area then estimating carbon dioxide gas which refers to the loss of burning biomass. The results showed that the number of hotspots detected in Ketapang Regency sequentially in 2013, 2015, and 2017 amounted to 368, 2824 and 141 hotspots which were dominated by mixed dry-land agriculture, swamp shrub and shrub. Meanwhile, emissions of carbon dioxide gas produced in 2013, 2015, and 2017 in mineral soils amounted to 644 135.92 tons CO2, 3 455 169.72 tons CO2 and 293 967.87 tons CO2, while in peat-lands emissions emitted are 48 162.91 tons of CO2, 919 640.45 tons of CO2 and 10 835.71 tons of CO2. Key words: carbon dioxide gas emissions, hotspots, Ketapang District, land cover


Author(s):  
R.G. Nelson, ◽  
C.H. Hellwinckel, ◽  
C.C. Brandt, ◽  
T.O. West, ◽  
D.G. De La Torre Ugarte, ◽  
...  

2007 ◽  
Vol 7 (3) ◽  
pp. 103-110
Author(s):  
C. Schilling ◽  
M. Zessner ◽  
A.P. Blaschke ◽  
D. Gutknecht ◽  
H. Kroiss

Two Austrian case study regions within the Danube basin have been selected for detailed investigations of groundwater and surface water quality at the catchment scale. Water balance calculations have been performed using the conceptual continuous time SWAT 2000 model to characterise catchment hydrology and to identify individual runoff components contributing to river discharge. Nitrogen emission calculations have been performed using the empirical emission model MONERIS to relate individual runoff components to specific nitrogen emissions and for the quantification of total nitrogen emissions to surface waters. Calculated total nitrogen emissions to surface waters using the MONERIS model were significantly influenced by hydrological conditions. For both catchments the groundwater could be identified as major emission pathway of nitrogen emissions to the surface waters. Since most of the nitrogen is emitted by groundwater to the surface water, denitrification in groundwater is of considerable importance reducing nitrogen levels in groundwater along the flow path towards the surface water. An approach was adopted for the grid-oriented estimation of diffuse nitrogen emissions based on calculated groundwater residence time distributions. Denitrification in groundwater was considered using a half life time approach. It could be shown that more than 90% of the total diffuse nitrogen emissions were contributed by areas with low groundwater residence times and short distances to the surface water. Thus, managing diffuse nitrogen emissions the location of catchment areas has to be considered as well as hydrological and hydrogeological conditions, which significantly influence denitrification in the groundwater and reduce nitrogen levels in groundwater on the flow path towards the surface water.


Sign in / Sign up

Export Citation Format

Share Document