scholarly journals Pendugaan Emisi Gas Karbondioksida Akibat Kebakaran Hutan Dan Lahan Di Kabupaten Ketapang Provinsi Kalimantan Barat

2019 ◽  
Vol 10 (3) ◽  
pp. 152-158
Author(s):  
Bambang Hero Saharjo ◽  
Citra Septriantri Putri

Forest and land fires are phenomena that often occur in Indonesia and have a negative impact on life. One of them is carbon dioxide gas emissions which influences global climate change. Therefore, information is needed regarding the estimation of carbon dioxide emissions in fire-prone areas, one of them is West Kalimantan, as a consideration in the activity to control forest and land fires. The method that is applied in this research is by estimating the area of the burned area then estimating carbon dioxide gas which refers to the loss of burning biomass. The results showed that the number of hotspots detected in Ketapang Regency sequentially in 2013, 2015, and 2017 amounted to 368, 2824 and 141 hotspots which were dominated by mixed dry-land agriculture, swamp shrub and shrub. Meanwhile, emissions of carbon dioxide gas produced in 2013, 2015, and 2017 in mineral soils amounted to 644 135.92 tons CO2, 3 455 169.72 tons CO2 and 293 967.87 tons CO2, while in peat-lands emissions emitted are 48 162.91 tons of CO2, 919 640.45 tons of CO2 and 10 835.71 tons of CO2. Key words: carbon dioxide gas emissions, hotspots, Ketapang District, land cover

2019 ◽  
Vol 26 (3) ◽  
pp. 31-38
Author(s):  
Wojciech Gis ◽  
Maciej Gis ◽  
Piotr Wiśniowski ◽  
Mateusz Bednarski

Abstract Limiting emissions of harmful substances is a key task for vehicle manufacturers. Excessive emissions have a negative impact not only on the environment, but also on human life. A significant problem is the emission of nitrogen oxides as well as solid particles, in particular those up to a diameter of 2.5 microns. Carbon dioxide emissions are also a problem. Therefore, work is underway on the use of alternative fuels to power the vehicle engines. The importance of alternative fuels applies to spark ignition engines. The authors of the article have done simulation tests of the Renault K4M 1.6 16v traction engine for emissions for fuels with a volumetric concentration of bioethanol from 10 to 85 percent. The analysis was carried out for mixtures as substitute fuels – without doing any structural changes in the engine's crankshafts. Emission of carbon monoxide, carbon dioxide, hydrocarbons, oxygen at full throttle for selected rotational speeds as well as selected engine performance parameters such as maximum power, torque, hourly and unit fuel consumption were determined. On the basis of the simulation tests performed, the reasonableness of using the tested alternative fuels was determined on the example of the drive unit without affecting its constructions, in terms of e.g. issue. Maximum power, torque, and fuel consumption have also been examined and compared. Thus, the impact of alternative fuels will be determined not only in terms of emissions, but also in terms of impact on the parameters of the power unit.


2008 ◽  
Vol 8 (2) ◽  
pp. 7373-7389 ◽  
Author(s):  
A. Stohl

Abstract. Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005–2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.


2021 ◽  
Vol 19 (5) ◽  
pp. 35-42
Author(s):  
Abdullah A. Abdullah

The element carbon Carbon dioxide emissions are increasing primarily as a result of people's use of fossil fuels for electricity. Coal and oil are fossil fuels that contain carbon that plants removed from the atmosphere by photosynthesis over millions of years; and in just a few hundred years we've returned carbon to the atmosphere. The element carbon Carbon dioxide concentrations rise primarily as a result of the burning of fossil fuels and Freon for electricity. Fossil fuels such as coal, oil and gas produce carbon plants that were photosynthesized from the atmosphere over many years, since in just two centuries, carbon was returned to the atmosphere. Climate alter could be a noteworthy time variety in weather designs happening over periods ranging from decades to millions of a long time. The permanent change in climatic conditions, or in the time period of long-term natural conditions, indicates irregularity in climatic conditions. Discuss toxins are pollutants that have an adverse impact on the ecosystem through interferometry's with the climatic environment, plant physiology, creature organisms, complete biological systems and human property in the form of agricultural or human crops. We list the best climate to represent the fact that global climate change has been identified as one of the major environmental problems facing humanity in the 21st century. In this context, the list of "classic" poisons must be included alongside substances such as oxides of nitrogen or sulfide. Certain environment limiting agents – the most crucial of them being carbon dioxide – which otherwise do not damage life formations. On the other hand, climate research has linked some compounds that have long been known to discuss toxin (occasionally dark CO2) with the warming of the climate.


Author(s):  
Lisa Kemmerer

Cheap meat, dairy, and eggs are an illusion—we pay for each with depleted forests, polluted freshwater, soil degradation, and climate change. Diet is the most critical decision we make with regard to our environmental footprint—and what we eat is a choice that most of us make every day, several times a day. Dietary choice contributes powerfully to greenhouse gas emissions (GHGE) and water pollution. Animal agriculture is responsible for an unnerving quantity of greenhouse gas emissions. Eating animal products—yogurt, ice cream, bacon, chicken salad, beef stroganoff, or cheese omelets—greatly increases an individual’s contribution to carbon dioxide, methane, and nitrous oxide emissions. Collectively, dietary choice contributes to a classic “tragedy of the commons.” Much of the atmosphere’s carbon dioxide (CO2) is absorbed by the earth’s oceans and plants, but a large proportion lingers in the atmosphere—unable to be absorbed by plants or oceans (“Effects”). Plants are not harmed by this process, but the current overabundance of carbon dioxide in the atmosphere causes acidification of the earth’s oceans. As a result of anthropogenic carbon dioxide emissions, the “acidity of the world’s ocean may increase by around 170% by the end of the century,” altering ocean ecosystems, and likely creating an ocean environment that is inhospitable for many life forms (“Expert Assessment”). Burning petroleum also leads to wars that devastate human communities and annihilate landscapes and wildlife—including endangered species and their vital habitats. Additionally, our consumption of petroleum is linked with oil spills that ravage landscapes, shorelines, and ocean habitat. Oil pipelines run through remote, fragile areas—every oil tanker represents not just the possibility but the probability of an oil spill. As reserves diminish, our quest for fossil fuels is increasingly environmentally devastating: Canada’s vast reserves of tar sands oil—though extracted, transported, and burned only with enormous costs to the environment—are next in line for extraction. Consuming animal products creates ten times more fossil fuel emission per calorie than does consuming plant foods directly (Oppenlander 18). (This is the most remarkable given that plant foods are not generally as calorically dense as animal foods.) Ranching is the greatest GHGE offender.


2014 ◽  
Vol 805 ◽  
pp. 403-408
Author(s):  
Otávio Luiz do Nascimento ◽  
Alexandra Ancelmo Piscitelli Mansur ◽  
Herman Sander Mansur

Increased public awareness of the threats posed by global warming has led to greater concern over the impact of anthropogenic carbon emissions on the global climate associated with the level of carbon dioxide (CO2) in the atmosphere. Hence, without radical market, technological, and cultural changes, the CO2 concentrations are expected to rise to unbearable levels within just few decades ahead. The production of cement is estimated to be responsible for approximately 5% of the global carbon dioxide emissions. Consequently, aiming for creating a more sustainable world, engineers and scientists must develop and put into use greener building materials that may revolutionize the entire construction industry. This study presents an innovative product for settlement of ceramic tiles as a potential alternative for replacing the conventional cement based mortar in some specific building applications. Essentially, the novel system is based on a double face polymer-adhesive sheet (“cement-free product”). Thus, the main goal was to evaluate the performance and estimate the durability of the developed system. Pull-off tests were conducted in order to compare this new system to the traditional one, with polymer modified mortar, under different procedures and conditions of cure. In addition, both systems were modeled using Finite Element Method (FEM) to obtain the stresses at the interface between ceramic-tile and adhesive. Based on the results, the recommended limits of bond strength for the innovative “cement-free product” of ceramic tile installation could be lower than those specifications used for the equivalent mortar systems. Therefore, these results give some preliminary evidence that by using the new “cement-free” product for ceramic-tile installation may lead to some increase in the productivity and, more important, in the sustainability of a relevant sector of the construction industry.


2018 ◽  
Vol 4 (4) ◽  
pp. 584-604 ◽  
Author(s):  
Alex Matveev ◽  
Isabelle Laurion ◽  
Warwick F. Vincent

Thermokarst lakes are known to emit methane (CH4) and carbon dioxide (CO2), but little attention has been given to those formed from the thawing and collapse of lithalsas, ice-rich mineral soil mounds that occur in permafrost landscapes. The present study was undertaken to assess greenhouse gas stocks and fluxes in eight lithalsa lakes across a 200 km gradient of permafrost degradation in subarctic Québec. The northernmost lakes varied in their surface-water CO2 content from below to above saturation, but the southern lakes in this gradient had much higher surface concentrations that were well above air-equilibrium. Surface-water CH4 concentrations were at least an order of magnitude above air-equilibrium values at all sites, and the diffusive fluxes of both gases increased from north to south. Methane oxidation in the surface waters from a northern lake was only 10% of the emission rate, but at the southern end it was around 60% of the efflux to the atmosphere, indicating that methanotrophy can play a substantive role in reducing net emissions. Overall, our observations show that lithalsa lakes can begin emitting CH4 and CO2 soon after they form, with effluxes of both gases that persist and increase as the permafrost continues to warm and erode.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
William T. Morgan ◽  
Eoghan Darbyshire ◽  
Dominick V. Spracklen ◽  
Paulo Artaxo ◽  
Hugh Coe

AbstractDeforestation rates have declined substantially across the Brazilian Legal Amazon (BLA) over the period from 2000–2017. However, reductions in fire, aerosol and carbon dioxide have been far less significant than deforestation, even when accounting for inter-annual variability in precipitation. Our observations and analysis support a decoupling between fire and deforestation that has exacerbated forest degradation in the BLA. Basing aerosol and carbon dioxide emissions on deforestation rates, without accounting for forest degradation will bias these important climate and ecosystem-health parameters low, both now and in the future. Recent increases in deforestation rate since 2014 will enhance such degradation, particularly during drought-conditions, increasing emissions of aerosol and greenhouse gases. Given Brazil’s committed Nationally Determined Contribution under the Paris Agreement, failure to account for forest degradation fires will paint a false picture of prior progress and potentially have profound implications for both regional and global climate.


2013 ◽  
Vol 448-453 ◽  
pp. 4544-4547
Author(s):  
Di Wang ◽  
Guo Zhong Sun

China's CO2 emissions from 1990 to 2010 were calculated as well as two economical models were established, and the relationship between carbon dioxide emissions, economic growth, foreign direct investment (FDI) and export trade was analyzed. The result shows that the relations between China's carbon emissions and GDP showing the "N" type. Economic growth and export trade had significantly promoted China's carbon emissions, while the relations between FDI and China's carbon emissions are not significant. During the past years, exports have played an important role in promoting china's economic development. However, the main exporting industries are energy and emission intensive, which reveals disadvantage for carbon reduction. To reverse the negative impact of the export to china's carbon dioxide emissions, export structure should be optimized, and the outdated technology, equipment and products should be eliminated, while energy-conservative and environmental friendly industries should be promoted.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
Dwi Astiani ◽  
TRI WIDIASTUTI ◽  
SITI LATIFAH ◽  
DARBIN SIMATUPANG

Abstract. Astiani D, Widiastuti T, Latifah S, Simatupang D. 2020. Soil characteristics and CO2 emissions of ex-burnt peatland in Kubu Raya District, West Kalimantan, Indonesia. Biodiversitas 21: 3691-3698. West Kalimantan, Indonesia has a large extent of tropical peatland with total ​​1.74 million ha with only 44.5% of such areas remaining as peat forest, while the rests have been converted into plantations, agricultural lands, and shrubs. The conversion of peat forest often uses fires to clear the vegetation and is followed by building canal to drain the water. The lack of vegetation combined with drought soil trigger uncontrolled escaped fire, especially in the dry season or El-Nino events, which is likely to affect soil characteristics and emit carbon dioxide. The purpose of this study is to examine the changes in soil characteristics both physical and chemical properties and to investigate CO2 emissions from peat soil post-fire. As a comparison, similar parameters were also assessed in non-burnt sites. The results showed significant differences in some peat soil characters both physically and chemically between ex-burnt and non-burnt peatland. The ex-burnt site had higher pH, available phosphorus and C/N ratio than those in the non-burnt site. Conversely, the total nitrogen and carbon contents, and cation exchange capacity were lower which is likely due to leaching. Peat fires also impacted physical characteristics of the soil such as increasing soil bulk density, reducing soil water content, soil temperature, especially in wet conditions. Carbon dioxide emissions in the ex-burnt site were considered higher than non-burnt site. These results could be brought out as a part of baseline data in managing ex-burnt peatlands to maintain a balance between carbon output and input and efforts on preventing peatland fires from becoming continuous carbon sources.


2003 ◽  
pp. 277-315 ◽  
Author(s):  
J. Timmons Roberts ◽  
Peter E. Grimes ◽  
Jodie L. Manale

Carbon dioxide is understood to be the most important greenhouse gas believed to be altering the global climate. This article applies world-system theory to environmental damage. An analysis of 154 countries examines the contribution of both position in the world economy and internal class and political forces in determining a nation's CO, intensity. CO, intensity is defined here as the amount of carbon dioxide released per unit of economic output. An inverted U distribution of CO, intensity across the range of countries in the global stratification system is identified and discussed. Ordinary Least Squares regression suggests that the least efficient consumers of fossil fuels are some countries within the semi-periphery and upper periphery, spe-cifically those nations which are high exporters, those highly in debt, nations with higher military spending, and those with a repressive social structure.


Sign in / Sign up

Export Citation Format

Share Document