scholarly journals Using subnivean camera traps to study Arctic small mammal community dynamics during winter

2021 ◽  
Author(s):  
Jonas Peter Mölle ◽  
Eivind Flittie Kleiven ◽  
Rolf Anker Ims ◽  
Eeva M Soininen

Small rodents are a key indicator to understand the effect of rapidly changing winter climate on Arctic tundra ecosystems. However, monitoring rodent populations through the long Arctic winter by means of conventional traps has until now been hampered by snow cover and harsh ambient conditions. Here, we conduct the first extensive assessment of the utility of a newly developed camera trap to study the winter dynamics of small mammals in the low-Arctic tundra of northern Norway. Forty functional cameras were motion-triggered 20172 times between September 2014 and July 2015, mainly by grey-sided voles (Myodes rufocanus SUNDEVALL 1846), tundra voles (Microtus oeconomus PALLAS 1776), Norwegian lemmings (Lemmus lemmus LINNAEUS 1758) and shrews (Sorex spp.). These data proved to be suitable for dynamical modelling of species-specific site occupancy rates. The occupancy rates of all recorded species declined sharply and synchronously at the onset of the winter. This decline happened concurrently with changes in the ambient conditions recorded by time-lapse images of snow and water. Our study demonstrates the potential of subnivean camera traps for elucidating novel aspects of year-round dynamics of Arctic small mammal communities.

2021 ◽  
Author(s):  
Evan D. Amber ◽  
Jennifer M. Myers ◽  
Gregory J. Lipps ◽  
William E. Peterman

1993 ◽  
Vol 23 (10) ◽  
pp. 2286-2299 ◽  
Author(s):  
R.A. Lautenschlager

Reviewed studies of the effects of forest herbicide applications on wildlife often lacked replication, pretreatment information, and (or) were conducted for only one or two growing seasons after treatment. Because of these problems, as well as the use of dissimilar sampling techniques, study conclusions have sometimes been contradictory. A review of eight studies of the effects of herbicide treatments on northern songbird populations in regenerating clearcuts indicates that total songbird populations are seldom reduced during the growing season after treatment. Densities of species that use early successional brushy, deciduous cover are sometimes reduced, while densities of species which commonly use more open areas, sometimes increase. A review of 14 studies of the effects of herbicide treatments on small mammals indicates that like songbirds, small mammal responses are species specific. Some species are unaffected, while some select and others avoid herbicide-treated areas. Only studies that use kill or removal trapping to study small mammal responses show density reductions associated with herbicide treatment. It seems that some small mammal species may be reluctant to venture into disturbed areas, although residents in those areas are apparently not affected by the disturbance. Fourteen relevant studies examined the effects of conifer release treatments on moose and deer foods and habitat use. Conifer release treatments reduce the availability of moose browse for as long as four growing seasons after treatment. The degree of reduction during the growing season after treatment varies with the herbicide and rate used. Deer use of treated areas remains unchanged or increases during the first growing season after treatment. Eight years after treating a naturally regenerated spruce–fir stand browse was three to seven times more abundant on treated than on control plots (depending on the chemical and rate used). Forage quality (nitrogen, ash, and moisture) of crop trees increased one growing season after the soil-active herbicide simazine was applied to control competition around outplanted 3-year-old balsam fir seedlings.


2020 ◽  
Author(s):  
Karen E Rice ◽  
Rebecca A Montgomery ◽  
Artur Stefanski ◽  
Roy L Rich ◽  
Peter B Reich

Abstract Background and Aims Warmer temperatures and altered precipitation patterns are expected to continue to occur as the climate changes. How these changes will impact the flowering phenology of herbaceous perennials in northern forests is poorly understood but could have consequences for forest functioning and species interactions. Here, we examine the flowering phenology responses of five herbaceous perennials to experimental warming and reduced summer rainfall over 3 years. Methods This study is part of the B4WarmED experiment located at two sites in northern Minnesota, USA. Three levels of warming (ambient, +1.6 °C and +3.1 °C) were crossed with two rainfall manipulations (ambient and 27 % reduced growing season rainfall). Key Results We observed species-specific responses to the experimental treatments. Warming alone advanced flowering for four species. Most notably, the two autumn blooming species showed the strongest advance of flowering to warming. Reduced rainfall alone advanced flowering for one autumn blooming species and delayed flowering for the other, with no significant impact on the three early blooming species. Only one species, Solidago spp., showed an interactive response to warming and rainfall manipulation by advancing in +1.6 °C warming (regardless of rainfall manipulation) but not advancing in the warmest, driest treatment. Species-specific responses led to changes in temporal overlap between species. Most notably, the two autumn blooming species diverged significantly in their flowering timing. In ambient conditions, these two species flowered within the same week. In the warmest, driest treatment, flowering occurred over a month apart. Conclusions Herbaceous species may differ in how they respond to future climate conditions. Changes to phenology may lead to fewer resources for insects or a mismatch between plants and pollinators.


2020 ◽  
Vol 47 (4) ◽  
pp. 338
Author(s):  
Bracy W. Heinlein ◽  
Rachael E. Urbanek ◽  
Colleen Olfenbuttel ◽  
Casey G. Dukes

Abstract ContextCamera traps paired with baits and scented lures can be used to monitor mesocarnivore populations, but not all attractants are equally effective. Several studies have investigated the efficacy of different attractants on the success of luring mesocarnivores to camera traps; fewer studies have examined the effect of human scent at camera traps. AimsWe sought to determine the effects of human scent, four attractants and the interaction between attractants and human scent in luring mesocarnivores to camera traps. Methods We compared the success of synthetic fermented egg (SFE), fatty acid scent (FAS) tablets, castor oil, and sardines against a control of no attractant in luring mesocarnivores to camera traps. We deployed each attractant and the control with either no regard to masking human scent or attempting to restrict human scent for a total of 10 treatments, and replicated treatments eight to nine times in two different phases. We investigated whether: (1) any attractants increased the probability of capturing a mesocarnivore at a camera trap; (2) not masking human scent affected the probability of capturing a mesocarnivore at a camera trap; and (3) any attractants increased the probability of repeat detections at a given camera trap. We also analysed the behaviour (i.e. speed and distance to attractant) of each mesocarnivore in relation to the attractants. Key resultsSardines improved capture success compared with the control treatments, whereas SFE, castor oil, and FAS tablets had no effect when all mesocarnivores were included in the analyses. Masking human scent did not affect detection rates in the multispecies analyses. Individually, the detection of some species depended on the interactions between masking (or not masking) human scent and some attractants. ConclusionsSardines were the most effective as a broad-based attractant for mesocarnivores. Mesocarnivores approached traps baited with sardines at slower rates, which allows for a higher success of capturing an image of the animal. ImplicationsHuman scent may not need to be masked when deploying camera traps for multispecies mesocarnivore studies, but researchers should be aware that individual species respond differently to attractants and may have higher capture success with species-specific attractants.


AoB Plants ◽  
2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Clare Aslan ◽  
Noelle G Beckman ◽  
Haldre S Rogers ◽  
Judie Bronstein ◽  
Damaris Zurell ◽  
...  

Abstract Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption.


Ecology ◽  
2002 ◽  
Vol 83 (8) ◽  
pp. 2248-2255 ◽  
Author(s):  
Darryl I. MacKenzie ◽  
James D. Nichols ◽  
Gideon B. Lachman ◽  
Sam Droege ◽  
J. Andrew Royle ◽  
...  

2015 ◽  
Vol 97 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Petra Villette ◽  
Charles J. Krebs ◽  
Thomas S. Jung ◽  
Rudy Boonstra

Abstract Estimating population densities of small mammals (< 100g) has typically been carried out by intensive livetrapping, but this technique may be stressful to animals and the effort required is considerable. Here, we used camera traps to detect small mammal presence and assessed if this provided a feasible alternative to livetrapping for density estimation. During 2010–2012, we used camera trapping in conjunction with mark–recapture livetrapping to estimate the density of northern red-backed voles ( Myodes rutilus ) and deer mice ( Peromyscus maniculatus ) in the boreal forest of Yukon, Canada. Densities for these 2 species ranged from 0.29 to 9.21 animals/ha and 0 to 5.90 animals/ha, respectively, over the course of this investigation. We determined if hit window—the length of time used to group consecutive videos together as single detections or “hits”—has an effect on the correlation between hit rate and population density. The relationship between hit rate and density was sensitive to hit window duration for Myodes with R2 values ranging from 0.45 to 0.59, with a 90-min hit window generating the highest value. This relationship was not sensitive to hit window duration for Peromyscus , with R2 values for the tested hit windows ranging from 0.81 to 0.84. Our results indicate that camera trapping may be a robust method for estimating density of small rodents in the boreal forest when the appropriate hit window duration is selected and that camera traps may be a useful tool for the study of small mammals in boreal forest habitat.


2020 ◽  
Author(s):  
Brian Wood ◽  
Riccardo S. Millar ◽  
Nicholas Wright ◽  
Joshua Baumgartner ◽  
Hannah Holmquist ◽  
...  

In many regions of sub Saharan Africa large mammals occur in human-dominated areas, yet their community composition and species-specific densities have rarely been described in areas occupied by traditional hunter-gatherers and pastoralists. Surveys of mammal populations in such areas provide important measures of biodiversity and provide ecological context for understanding hunting practices. Using a sampling grid centered on a Hadza hunter-gatherer camp and covering 36 km² of semi-arid savannah in northern Tanzania, we assessed mammals using camera traps (n = 19 stations) for c. 5 months (2,182 trap nights). In the study area (Tli’ika in the Hadza language), we recorded 36 wild mammal species, resembling a near complete mammal community. Rarefaction curves suggest that sampling effort was sufficient to capture mammal species richness. Species-specific densities were estimated using a random encounter model and site- and species’ body mass- specific estimates of the area sampled at each camera; confidence intervals were estimated using bootstrapping. Point estimates of densities varied by c. four orders of magnitude, from 0.003 ind./km² (African wild dog) to 27.5 ind./km² (Kirk’s dik dik). Densities of livestock (cattle, donkey, sheep and goat) were high, particularly when estimated using directly observed herd sizes. Cumulative biomass density of herbivorous livestock species exceeded that of all wild mammals by a factor of 3.3-38.7. We compare our study’s data to camera trap rates recorded in a fully protected area of northern Tanzania with similar precipitation (Lake Manyara National Park), revealing that abundance indices of most wildlife species in Tli’ika were much lower. We discuss how these data inform studies of Hadza hunting and models of hunter-gatherer foraging ecology and diet.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10684
Author(s):  
Tamara I. Potter ◽  
Aaron C. Greenville ◽  
Christopher R. Dickman

Invertebrates dominate the animal world in terms of abundance, diversity and biomass, and play critical roles in maintaining ecosystem function. Despite their obvious importance, disproportionate research attention remains focused on vertebrates, with knowledge and understanding of invertebrate ecology still lacking. Due to their inherent advantages, usage of camera traps in ecology has risen dramatically over the last three decades, especially for research on mammals. However, few studies have used cameras to reliably detect fauna such as invertebrates or used cameras to examine specific aspects of invertebrate ecology. Previous research investigating the interaction between wolf spiders (Lycosidae: Lycosa spp.) and the lesser hairy-footed dunnart (Sminthopsis youngsoni) found that camera traps provide a viable method for examining temporal activity patterns and interactions between these species. Here, we re-examine lycosid activity to determine whether these patterns vary with different environmental conditions, specifically between burned and unburned habitats and the crests and bases of sand dunes, and whether cameras are able to detect other invertebrate fauna. Twenty-four cameras were deployed over a 3-month period in an arid region in central Australia, capturing 2,356 confirmed images of seven invertebrate taxa, including 155 time-lapse images of lycosids. Overall, there was no clear difference in temporal activity with respect to dune position or fire history, but twice as many lycosids were detected in unburned compared to burned areas. Despite some limitations, camera traps appear to have considerable utility as a tool for determining the diel activity patterns and habitat use of larger arthropods such as wolf spiders, and we recommend greater uptake in their usage in future.


2018 ◽  
Author(s):  
Maximilian L Allen ◽  
Morgan J Morales ◽  
Mike Wheeler ◽  
John D Clare ◽  
Marcus Mueller ◽  
...  

Carnivores are important components of ecosystems with wide-ranging effects on ecological communities. These effects are complex and vary with carnivore size, natural history, and hunting tactics, and researchers and managers must understand the ecological roles of carnivores and their interactions with their local environment. We studied the carnivore guild in the Apostle Islands National Lakeshore (APIS), where the distribution, abundance, and occupancy of carnivores was largely unknown. This knowledge was needed to understand island-level variation in carnivore communities and how this variation affects the community-level ecology of APIS. We developed a systematic method to deploy a grid of camera traps while targeting fine-scale features to maximize carnivore detection and for organizing and tagging the resulting photograph data. In this report, we document our findings from deploying 160 camera traps on 19 islands and mainland Wisconsin from 2014-2017. We collected 203,385 photographs across 49,280 trap nights, with 7,291 total wildlife events and 1,970 carnivore events. We had a mean 7.68 functioning camera traps per island (range 1-30), and our camera trap density averaged 1.89 (range 0.75-12.50) camera traps/ km2. We detected 10 terrestrial carnivores among 21 unique species detected, including unanticipated detections of American martens (Martes americana) and gray wolves (Canis lupus). The mean richness of carnivores on an island was 3.10 (range 0-10) species/island. The most supported single variable to explain carnivore richness on the Apostle Islands was island size, while the most supported model was island biogeography, which included island size (positive correlation), distance to mainland (negative correlation), and distance to nearest island (negative correlation). The relative abundance of a species was significantly correlated with the number of islands on which they were found. Mean carnivore occupancy across islands ranged from 0.24 for gray wolves to a high of 0.93 for black bears (Ursus americanus). Detection rates for species were generally higher in summer than winter, with the exception of coyotes (Canis latrans) and red foxes (Vulpes vulpes). Low levels of human activity and development in APIS may play a role in supporting carnivore species that tend to avoid human disturbance. However, none of the islands in the archipelago are likely large enough to sustain populations of mammalian carnivores in the face of demographic stochasticity or the genetic effects of small population size. Therefore, one important area for future study is determining how carnivores colonize and move between islands, as well as how the carnivore guild interacts and affects each other. Fuller understanding of APIS ecology will require on-going monitoring of carnivores to evaluate temporal dynamics as well as related ecological evaluations (e.g. small mammal dynamics, plant community dynamics) to understand trophic effects.


Sign in / Sign up

Export Citation Format

Share Document