Variability in litter quality and its relationship to litter decay in Canadian forests

2000 ◽  
Vol 78 (10) ◽  
pp. 1269-1287 ◽  
Author(s):  
Caroline M Preston ◽  
JA (Tony) Trofymow ◽  
the Canadian Intersite Decompositio Working Group

Predicting the effects of climate change on litter decomposition requires an improved understanding of the link between organic composition and the parameters used to define litter quality. Carbon-13 nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning (CPMAS NMR) was used to characterize 36 foliar litters, including the species used in the Canadian Intersite Decomposition Experiment (CIDET), a Canada-wide long-term litter decomposition study. The litters showed a wide range of organic composition, qualitatively interpreted as the sum of component biopolymers (mainly carbohydrates, cutin, tannins, and lignin). Only weak correlations were found between NMR parameters and Klason lignin (KLIG); however, cluster analysis based on elemental, NMR, and proximate analysis gave good separation of botanical classes. NMR also had little predictive value for 3-year CIDET mass losses, which were negatively correlated with both KLIG and KLIG/N. Mass loss generally decreased in the following order: grass > pioneer broad-leafed deciduous > conifer (deciduous and evergreen) > American beech (a fagaceae) > wood. Predictive models for 3-year CIDET mass loss derived from linear regression with elemental, proximate, and NMR analyses were superior to those using only NMR parameters, with the best model based on KLIG, N, and Ca. Although providing no molecular-level understanding, KLIG integrates the most insoluble lignin, cutin, and tannin components. Limitations and possible improvements for NMR evaluation of litter quality are discussed.Key words: Klason lignin, 13C CPMAS NMR, proximate analysis, litter decomposition, tannin, cutin, CIDET.

1997 ◽  
Vol 75 (9) ◽  
pp. 1601-1613 ◽  
Author(s):  
Caroline M. Preston ◽  
J. A. (Tony) Trofymow ◽  
Junning Niu ◽  
Brian G. Sayer

Proximate analysis is often used in decomposition studies to characterize the organic components of foliar litter. The percent weight residue remaining after extraction by nonpolar and polar solvents and H3SO4 hydrolysis (Klason lignin, KL) is commonly used as a measure of litter quality and a modelling parameter. While KL is associated with resistance to decay, its nature is not well understood and it has long been suspected that it incorporates nonlignin components. We used solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to characterize litter, extracted residue, and the KL fraction of five species. NMR shows that cutin and condensed tannin are both significant components of litter and its extraction residues, in addition to lignin and carbohydrate. Hydrolysis with H2SO4 removes carbohydrates and amino acids, leaving the KL fraction derived from cutin, tannin, and lignin. Tannin retention in KL was also demonstrated by a hydrolysis study of purified tannins and a brown-rot lignin, using both NMR and the proanthocyanidin assay for condensed tannins. Although the NMR results are qualitative at this stage, it is clear that KL has limited use as a parameter controlling litter decomposition, and that other biopolymers should not be ignored in conceptual models, chemical analysis, and experimental design. Key words: Klason lignin, 13C CPMAS NMR, proximate analysis, litter quality, decomposition, tannin.


1998 ◽  
Vol 62 (2) ◽  
pp. 165-178 ◽  
Author(s):  
C. M. B. Henderson ◽  
A. M. T. Bell ◽  
S. C. Kohn ◽  
C. S. Page

AbstractThe structure of a synthetic end-member wairakite (CaAl2Si4O12·2H2O) has been determined using Rietveld analysis of high-resolution, synchrotron X-ray powder diffraction data, and 29Si and 27Al magic angle spinning nuclear magnetic resonance spectroscopy. The framework in the synthetic sample is more disordered than that in natural wairakite. Ca is distributed over the cavity cation sites M2, M12A, M12B in the approximate proportions 0.8:0.1:0.1, respectively, with M11 being vacant. 29Si MAS NMR data are consistent with about 80% of the Si occupying tetrahedral T11 and T12 sites linked to two Al atoms [Q4(2Al) silicons]. Tetrahedral and cavity cation site disorder are coupled so that Al mainly occupies T2 sites, with Ca in M12A and M12B being balanced by Al in T12A and T12B; T11A and T11B sites appear to only contain Si, in agreement with the M11 site being vacant. The crystal chemistries of the wide range of stoichiometries which crystallize with the leucite/pollucite structure-type are also reviewed, with particular attention being paid to the tetrahedral ordering configurations present in these phases, and the implications to crystallographic phase transitions.


2012 ◽  
Vol 518-523 ◽  
pp. 1913-1917
Author(s):  
Fang Qin Guo ◽  
Wei Chen

The effects of N deposition induced by environmental pollution on litter decomposition rate in Shenyang city are analyzed by the reciprocal transplant experiment. By contrasting environments and intraspecific variations in Cortex Phellodendri Chinensis leaf litter quality on mass loss rates to investigate the effects of N deposition on mass loss rates in urban and suburb. The results showed that N deposition in urban significantly affected litter decomposition rate by affecting litter quality and environmental conditions. There was a faster decomposition rate when the environmental conditions or litter quality was affected by N deposition.


1994 ◽  
Vol 24 (3) ◽  
pp. 447-452 ◽  
Author(s):  
T.K. Lukumbuzya ◽  
J.W. Fyles ◽  
B. Côté

Application of base-cation fertilizers has been shown to increase tree growth and vigour in declining sugar maple (Acersaccharum Marsh.) stands in southern Quebec but little is known about the effects of such fertilizers on litter quality or decomposition. Sugar maple foliage litters from fertilized and unfertilized plots on a base-poor site and from a naturally base-rich site were incubated in litterbags of 1- and 3-mm mesh sizes on fertilized and unfertilized plots at the base-poor site. Mass loss of unfertilized litter was slower in fertilized than in unfertilized plots, suggesting a negative effect of fertilization on the decomposer community. Faster mass loss of fertilized than unfertilized litter incubated in the same plot indicated that changes in litter quality brought about by fertilization enhanced decomposition. Mass loss of fertilized litter on fertilized plots did not differ from that of unfertilized litter on control plots, indicating that although decomposition processes are affected by fertilization the overall effect on decomposition is negligible. Mass loss was significantly, but only slightly, higher in large mesh than in small mesh bags indicating that larger soil fauna play a limited role in litter decomposition in this forest.


2002 ◽  
Vol 32 (5) ◽  
pp. 789-804 ◽  
Author(s):  
J A Trofymow ◽  
T R Moore ◽  
B Titus ◽  
C Prescott ◽  
I Morrison ◽  
...  

The effects of litter quality and climate on decomposition rates of plant tissues were examined using percent mass remaining (MR) data of 10 foliar litter types and 1 wood type during 6 years exposure at 18 upland forest sites across Canada. Litter-quality variables used included initial nutrient contents (N, P, S, K, Ca, Mg) and carbon fractions (determined by proximate analysis and 13C nuclear magnetic resonance spectroscopy). Climate variables used included mean annual temperature; total, summer, and winter precipitation; and potential evaptranspiration. A single-exponential decay model with intercept was fit using the natural logarithm of 0- to 6-year percent MR data (LNMR) for all 198 type by site combinations. Model fit was good for most sites and types (r2 = 0.64–0.98), although poorest for cold sites with low-quality materials. Multiple regression of model slope (Kf) and intercept (A) terms demonstrated the importance of temperature, summer precipitation, and the acid-unhydrolyzable residue to N ratio (AUR/N) (r2 = 0.65) for Kf, and winter precipitation and several litter-quality variables including AUR/N for A (r2 = 0.60). Comparison of observed versus predicted LNMR for the best overall combined models were good (r2 = 0.75–0.80), although showed some bias, likely because of other site- and type-specific factors as predictions using 198 equations accounted for more variance (r2 = 0.95) and showed no bias.


2019 ◽  
Author(s):  
Chollet Simon ◽  
Maillard Morgane ◽  
Schörghuber Juliane ◽  
Grayston Sue ◽  
Martin Jean-Louis

ABSTRACTIn temperate forest ecosystems, the role of deer in litter decomposition, a key nutrient cycling process, remains debated. Deer may modify the decomposition process by affecting plant cover and thus modifying litter abundance. They can also alter litter quality through differential browsing and affect decomposer ability by changing soil abiotic properties and the nature of decomposer communities. We used two litterbag experiments in a quasi-experimental situation resulting from the introduction of Sitka black-tailed deer Odocoileus odocoileus sitkensis on forested islands of Haida Gwaii (Canada). We investigated the effects of deer on decomposition through their impacts on litter quality and on decomposer ability. After one year, the effect of deer on litter quality resulted in a lower rate of mass loss in litter from litterbags. This mass loss mainly reflected a 21 and 38 % lower rate of carbon (C) and nitrogen (N) loss, respectively. Presence of deer resulted in lower decomposer ability for the rate of carbon loss, but not for nitrogen loss. The level of C loss after one year was 5% higher for litter decomposing on an island without deer. But the change in the rate of carbon loss explained by the effect of deer on decomposer ability was outweighed by the effect deer had on litter quality. Additional effects of deer on the decomposition process through feces deposition were significant but minor. These results question the role the large increase in deer populations observed in temperate forests at continental scales may play in broad scale patterns of C and N cycling.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5095 ◽  
Author(s):  
Bruno Chávez-Vergara ◽  
Agustín Merino ◽  
Antonio González-Rodríguez ◽  
Ken Oyama ◽  
Felipe García-Oliva

Background Litter decomposition is a key process in the functioning of forest ecosystems, because it strongly controls nutrient recycling and soil fertility maintenance. The interaction between the litter chemical composition and the metabolism of the soil microbial community has been described as the main factor of the decomposition process based on three hypotheses: substrate-matrix interaction (SMI), functional breadth (FB) and home-field advantage (HFA). The objective of the present study was to evaluate the effect of leaf litter quality (as a direct plant effect, SMI hypothesis), the metabolic capacity of the microbial community (as a legacy effect, FB hypothesis), and the coupling between the litter quality and microbial activity (HFA hypothesis) on the litter decomposition of two contiguous deciduous oak species at a local scale. Methods To accomplish this objective, we performed a litterbag experiment in the field for 270 days to evaluate mass loss, leaf litter quality and microbial activity in a complete factorial design for litter quality and species site. Results The litter of Quercus deserticola had higher rate of decomposition independently of the site, while the site of Quercus castanea promoted a higher rate of decomposition independently of the litter quality, explained by the specialization of the soil microbial community in the use of recalcitrant organic compounds. The Home-Field Advantage Index was reduced with the decomposition date (22% and 4% for 30 and 270 days, respectively). Discussion We observed that the importance of the coupling of litter quality and microbial activity depends on decomposition stage. At the early decomposition stage, the home-advantage hypothesis explained the mass loss of litter; however, in the advanced decomposition stage, the litter quality and the metabolic capacity of the microbial community can be the key drivers.


2020 ◽  
Vol 100 (1) ◽  
pp. 11-25 ◽  
Author(s):  
Guoyong Yan ◽  
Xiongde Dong ◽  
Binbin Huang ◽  
Honglin Wang ◽  
Ziming Hong ◽  
...  

We conducted a field experiment with four levels of simulated nitrogen (N) deposition (0, 2.5, 5, and 7.5 g N m−2 yr−1, respectively) to investigate the response of litter decomposition of Pinus koraiensis (PK), Tilia amurensis (TA), and their mixture to N deposition during winter and growing seasons. Results showed that N addition significantly increased the mass loss of PK litter and significantly decreased the mass loss of TA litter throughout the 2 yr decomposition processes, which indicated that the different responses in the decomposition of different litters to N addition can be species specific, potentially attributed to different litter chemistry. The faster decomposition of PK litter with N addition occurred mainly in the winter, whereas the slower decomposition of TA litter with N addition occurred during the growing season. Moreover, N addition had a positive effect on the release of phosphorus, magnesium, and manganese for PK litter and had a negative effect on the release of carbon, iron, and lignin for TA litter. Decomposition and nutrient release from mixed litter with N addition showed a non-additive effect. The mass loss from litter in the first winter and over the entire study correlated positively with the initial concentration of cellulose, lignin, and certain nutrients in the litter, demonstrating the potential influence of different tissue chemistries.


2012 ◽  
Vol 28 (5) ◽  
pp. 437-443 ◽  
Author(s):  
Terrence P. McGlynn ◽  
Evan K. Poirson

Abstract:The decomposition of leaf litter is governed, in part, by litter invertebrates. In tropical rain forests, ants are dominant predators in the leaf litter and may alter litter decomposition through the action of a top-down control of food web structure. The role of ants in litter decomposition was investigated in a Costa Rican lowland rain forest with two experiments. In a mesocosm experiment, we manipulated ant presence in 50 ambient leaf-litter mesocosms. In a litterbag gradient experiment, Cecropia obtusifolia litter was used to measure decomposition rate constants across gradients in nutrients, ant density and richness, with 27 separate litterbag treatments for total arthropod exclusion or partial arthropod exclusion. After 2 mo, mass loss in mesocosms containing ants was 30.9%, significantly greater than the 23.5% mass loss in mesocosms without ants. In the litter bags with all arthropods excluded, decomposition was best accounted by the carbon: phosphorus content of soil (r2 = 0.41). In litter bags permitting smaller arthropods but excluding ants, decomposition was best explained by the local biomass of ants in the vicinity of the litter bags (r2 = 0.50). Once the microarthropod prey of ants are permitted to enter litterbags, the biomass of ants near the litterbags overtakes soil chemistry as the regulator of decomposition. In concert, these results support a working hypothesis that litter-dwelling ants are responsible for accelerating litter decomposition in lowland tropical rain forests.


Sign in / Sign up

Export Citation Format

Share Document