Genetic variation in two Chamaecrista species (Leguminosae), one endangered and narrowly distributed and another widespread in the Serra do Espinhaço, Brazil

2007 ◽  
Vol 85 (7) ◽  
pp. 629-636 ◽  
Author(s):  
Reinaldo Moreira da Silva ◽  
G. Wilson Fernandes ◽  
Maria Bernadete Lovato

The Serra do Espinhaço in Brazil is under continuous and increasing levels of human disturbance. It has a large number of endemic plant species such as Chamaecrista semaphora (Irwin and Barneby), an endangered species with extremely narrow range. We studied the genetic diversity of C. semaphora and compared it with Chamaecrista mucronata (Spreng.) Irwin and Barneby, a widespread congeneric species distributed over the entire Serra do Espinhaço, in an attempt to provide information for conservation strategies. Two populations of C. mucronata and the only two known populations of C. semaphora from Serra do Cipó were screened for variability using random amplified polymorphic DNA (RAPD) markers. Populations of C. semaphora exhibited a lower percentage of polymorphic markers (16.9%) and Shannon’s Diversity Index (H′pop = 0.124) than C. mucronata populations (43.3% and H′pop = 0.299). Most of the genetic variability of both species studied was distributed within populations; C. semaphora populations (ΦST = 0.198) were less divergent than C. mucronata populations (ΦST = 0.378). The risk of extinction for C. semaphora is large owing to its low level of genetic diversity compared with its widespread congener and because of increasing habitat destruction. Both populations of C. semaphora urgently need protection to maximize the genetic diversity of this species and diminish further substantial loss within the populations.

2001 ◽  
Vol 58 (3) ◽  
pp. 459-473 ◽  
Author(s):  
T. R. ALLNUTT ◽  
J. R. COURTIS ◽  
M. GARDNER ◽  
A. C. NEWTON

The threatened Chilean conifer Podocarpus salignus D. Don is currently the focus of ex situ conservation eorts being undertaken by the Conifer Conservation Programme of the Royal Botanic Garden Edinburgh. To assess variation within in and ex situ populations of the species, leaf material collected from four wild populations was analysed by random amplified polymorphic DNA (RAPD). Amova of RAPD profiles indicated that 93% of the variation occurred within, rather than between, populations. Intraspecific genetic diversity, estimated using percentage polymorphic loci, Shannon's diversity index, and Nei's gene diversity, was relatively high (47%, 0.692 and 0.314, respectively). To assess genetic diversity in ex situ populations within the UK, RAPD analysis of parents and progeny at two Cornish arboreta was undertaken. The results provided evidence of novel hybridization with suspected paternal trees (P. hallii Kirk and P. totara G. Benn. ex D. Don) endemic to New Zealand. RAPD was found to be an effective tool for assessing the genetic structure of P. salignus, for providing a guide to future germplasm-sampling strategies, and for hybrid identification. Implications for genetic conservation of the species and the role of ex situ approaches are discussed.


2013 ◽  
Vol 21 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Saida Sharifova ◽  
Sabina Mehdiyeva ◽  
Konstantinos Theodorikas ◽  
Konstantinos Roubos

Abstract Random Amplified Polymorphic DNA (RAPD) analysis was carried out on 19 Azerbaijan tomato genotypes, both cultivars and local populations. A total of 26 amplified products were revealed by 6 primers. The genetic similarity among evaluated genotypes ranged from 0.188 to 1.000. The lowest similarity was observed between cultivars ‘Azerbaijan’ and ‘Shakar’ (0.188), while the highest between ‘Elnur’ and ‘Garatag’ (1.000). The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis based on Jaccard’s similarity coefficient divided genotypes into four main groups. The first group was the largest and consisted of 12 genotypes, while the fourth group was the smallest consisted of 1 genotype only. The most polymorphic primer was OPB-18 that presented a genetic diversity index of 0.823, while the least informative was primer OPG-17 with an index of 0.349. The average genetic diversity calculated from RAPD data was 0.665.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irshad Ahmad Sofi ◽  
Irfan Rashid ◽  
Javaid Yousuf Lone ◽  
Sandhya Tyagi ◽  
Zafar A. Reshi ◽  
...  

AbstractHabitat loss due to climate change may cause the extinction of the clonal species with a limited distribution range. Thus, determining the genetic diversity required for adaptability by these species in sensitive ecosystems can help infer the chances of their survival and spread in changing climate. We studied the genetic diversity and population structure of Sambucus wightiana—a clonal endemic plant species of the Himalayan region for understanding its possible survival chances in anticipated climate change. Eight polymorphic microsatellite markers were used to study the allelic/genetic diversity and population structure. In addition, ITS1–ITS4 Sanger sequencing was used for phylogeny and SNP detection. A total number of 73 alleles were scored for 37 genotypes at 17 loci for 8 SSRs markers. The population structural analysis using the SSR marker data led to identifying two sub-populations in our collection of 37 S. wightiana genotypes, with 11 genotypes having mixed ancestry. The ITS sequence data show a specific allele in higher frequency in a particular sub-population, indicating variation in different S. wightiana accessions at the sequence level. The genotypic data of SSR markers and trait data of 11 traits of S. wightiana, when analyzed together, revealed five significant Marker-Trait Associations (MTAs) through Single Marker Analysis (SMA) or regression analysis. Most of the SSR markers were found to be associated with more than one trait, indicating the usefulness of these markers for working out marker-trait associations. Moderate to high genetic diversity observed in the present study may provide insurance against climate change to S. wightiana and help its further spread.


2011 ◽  
Vol 54 (4) ◽  
pp. 419-429
Author(s):  
S. Kusza ◽  
S. Mihók ◽  
L. Czeglédi ◽  
A. Jávor ◽  
M. Árnyasi

Abstract. The aim of the study was to provide information on the genetic variability of the Hungarian Bronze turkey gene reserve population and its difference from the Broad-breasted turkey, and offer guidance and proposals for its future conservation strategies. Altogether, 239 Hungarian Bronze turkeys from 10 strains and 13 Broad-breasted turkeys as a control population were genotyped for 15 microsatellites. All loci were polymorphic with the average number of alleles per locus 3.20±1.146 in the Hungarian Bronze turkey. The mean expected (Hexp) and observed heterozygosity (Hobs) were not different (0.392 and 0.376, respectively) in the overall population, and similar values were obtained for hens and bucks and among hen strains. Inbreeding coefficient (FIS) and Shannon index (I) indicated that there was low inbreeding within hens and bucks. Our results confirm that the genetic diversity in the Hungarian Bronze turkey population has been preserved by the rotational mating system. Differences between the Hungarian Bronze turkey and the Broad-breasted turkey populations were determined. Nei’s unbiased values clearly indicated that the two populations are highly genetically differentiated.


2007 ◽  
Vol 67 (4 suppl) ◽  
pp. 805-811 ◽  
Author(s):  
FP. Rodrigues ◽  
JF. Garcia ◽  
PRR. Ramos ◽  
J. Bortolozzi ◽  
JMB. Duarte

The Pampas deer (Ozotoceros bezoarticus) is one of the most endangered Neotropical cervid with populations that have been drastically reduced to small and isolated ones, mainly because of its habitat destruction. Random amplified polymorphic DNA (RAPD) markers were used to analyze population divergence and genetic variation within and between two populations corresponding to distinct subspecies. The RAPD markers displayed substantial genetic variation with all animals possessing unique RAPD phenotypes over 105 polymorphic bands produced by 15 primers. An analysis of molecular variance (AMOVA) and a neighbor-joining cluster analysis were performed to assess levels of differentiation between populations. No differentiation was recorded and about 96.0% (P < 0.00001) of the total variance was attributable to variation within populations. This result is quite distinct from data obtained by the analysis of the mtDNA control region, and is discussed on the basis of genetic differences between the different markers and the male-biased dispersal patterns generally observed in the mammal species. The data presented herein are potentially useful for future taxonomic and genetic studies in this species, for the monitoring of the genetic variation observed within these populations, and for the development of management guidelines for its conservation.


2019 ◽  
Vol 157 (5) ◽  
pp. 399-412 ◽  
Author(s):  
W. Saoudi ◽  
M. Badri ◽  
M. Gandour ◽  
A. Smaoui ◽  
C. Abdelly ◽  
...  

AbstractHordeum marinum commonly known as sea barley is a salinity-tolerant species of grass. In the current study, 150 lines from ten populations of H. marinum ssp. marinum collected from five Tunisian bioclimatic sites were screened for polymorphism with 13 selected random amplified polymorphic DNA primers. Results exhibited a high level of polymorphism (160 polymorphic bands with an average of 12.46 per primer) and a high level of genetic diversity in all the studied populations (on average UHe = 0.247 and I = 0.358). High discrimination capacity was found for the 13 primers and a combination of three allowed assignation of a unique profile for each of the 150 lines. The partition of genetic diversity with Analysis of Molecular Variance suggested that the majority of genetic variation (67%) was within populations. The components between-populations within ecoregions and between-ecoregions explained 21 and 12%, respectively, of the total genetic variance. There was no significant association of population differentiation (ФPT) with geographical distance or altitudinal difference. Results also showed that the 150 lines grouped into three clusters with no respect to geographic origin. A sub-set of 13 lines was identified, which captured the maximum genetic diversity of the entire collection. The genetic variation found in this collection of H. marinum is deemed to be useful in formulating conservation strategies for this species.


Author(s):  
SHARMILA S. ◽  
AKILANDESWARI D. ◽  
RAMYA E. K. ◽  
MOWNIKA S.

Objective: To investigate the ecological and genetic diversity, climatic factors, edaphic factors morphological and reproductive characters and RAPD analysis of medicinal plant species Pterolobium hexapetalum in two hills viz., Maruthamalai (arid) and Chennimalai (very arid), which is located in Coimbatore and Erode districts, Tamil Nadu. Methods: The present research was carried out by using a random amplified polymorphic DNA (RAPD) analysis was made to determine the genetic variation between the two populations of the medicinal shrub, Pterolobium hexapetalum in an environmental gradient. Among the five primers tested, the OPN7 (80 %) and OPN17 (71.4 %) produced higher polymorphism was used in RAPD analysis. Results: The results of RAPD analysis showed the presence of 51 individual bands were formed, out of which, 29 were polymorphic bands which showed the existence of genetic variation between populations. A dendrogram was constructed based on Jaccard’s coefficient to determine the degree of genetic relationship among the two populations and analysed. The primers OPN7 and OPN17 were clustered together at a genetic distance level 10. Considering the elevation and proximity, the temperature ranges from 18 °C to 37.6 °C in Maruthamalai hill and 20 °C to 39.4 °C in Chennimalai hill. Conclusion: From the morphoecological studies the results indicated that both arid and very arid climatic conditions showed slight differences in their vegetative and reproductive characters.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1984
Author(s):  
Paulina Bolc ◽  
Bogusław Łapiński ◽  
Wiesław Podyma ◽  
Maja Boczkowska

Avena macrostachya is still a relatively unknown species. Using sequence-related amplified polymorphism (SRAP) markers, a simple and inexpensive technique, allowed us to conduct experiments on genetic differentiation and to study the population structure of this Algerian endemic oat. The results obtained showed lower than expected genetic diversity within the A. macrostachya species. The cause may be endemism of the species as well as genetic drift possible during collection, and maintenance of the accessions in gene bank and seed reproduction. No clear genetic structure was found in the examined collection, which indicates a close relationship between the populations collected in the Djurdjura National Park in Algeria. Considering the endemism of the species, its breeding potential and the small-scale ex situ collection, careful monitoring of natural sites and repeating of the collection mission are, therefore, absolutely crucial.


2008 ◽  
Vol 5 (1) ◽  
pp. 67-72
Author(s):  
Shen Cheng-Wen ◽  
Huang Yi-Huan ◽  
Huang Jian-An ◽  
Luo Jun-Wu ◽  
Liu Chun-Lin ◽  
...  

AbstractGenetic diversity and genetic variation of 240 adult plants of four tea populations in Hunan – Camellia sinensis var. sinensis, C. sinensis var. assamica cv. Duntsa, C. ptilophylla and C. sinensis var. assamica cv. Jianghua – were studied by rapid amplification of polymorphic DNA (RAPD) markers. The results showed 226 loci using 21 random primers (10 bp), of which 201 (88.9%) were polymorphic. The genetic diversity analysis indicated that Shannon's index was 0.43; 74.7% of which was within-population genetic diversity while 25.3% was among-population variation. The gene diversity indexes of total populations (HT), within populations (HS) and among populations (HST) were, respectively, 0.37, 0.28 and 0.09. The coefficient of gene differentiation (GST) among populations was 0.23, indicating a 76.7% variation within populations and 23.3% among populations. These results displayed a rich within-population genetic variation, as in Shannon's diversity index. Interpopulation gene flow (Nm) was 0.74, which indicates the limited genetic exchange between populations.


2004 ◽  
Vol 8 (4) ◽  
pp. 289-294 ◽  
Author(s):  
Youn‐Bong Ku ◽  
Hyun‐Kyung Oh ◽  
Hak‐Yang Kong ◽  
Min Hwan Suh ◽  
Min‐Hyo Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document