THE ORIGIN OF THE PECTIC LAYER OF THE CELL WALL OF SCENEDESMUS QUADRICAUDA

1965 ◽  
Vol 43 (12) ◽  
pp. 1549-1552 ◽  
Author(s):  
T. Bisalputra

The origin of the pectic layer of the cell wall of Scenedesmus quadricauda can be related to the activity of the nuclear envelope. During the four-nucleate stage, dense vesicles are formed by budding off from the outer nuclear membrane. These vesicles then migrate toward the plasma membrane and their contents are released from the cytoplasm by the process of reverse pinocytosis. From the released matrix the props and the net are organized; they become the easily recognized basic structure of the pectic layer of the cell wall.

F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 1804 ◽  
Author(s):  
Peter Wild ◽  
Andres Kaech ◽  
Elisabeth M. Schraner ◽  
Ladina Walser ◽  
Mathias Ackermann

Background: Herpesvirus capsids are assembled in the nucleus, translocated to the perinuclear space by budding, acquiring tegument and envelope, or released to the cytoplasm via impaired nuclear envelope. One model proposes that envelopment, “de-envelopment” and “re-envelopment” is essential for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment, by fusion of the “primary” envelope with the outer nuclear membrane. Yet, a high proportion of enveloped virions generated from genomes with deleted gB/gH were found in the cytoplasm and extracellular space, suggesting the existence of alternative exit routes.Methods: We investigated the relatedness between the nuclear envelope and membranes of the endoplasmic reticulum and Golgi complex, in cells infected with either herpes simplex virus 1 (HSV-1) or a Us3 deletion mutant thereof, or with bovine herpesvirus 1 (BoHV-1) by transmission and scanning electron microscopy, employing freezing technique protocols.Results:  The Golgi complex is a compact entity in a juxtanuclear position covered by a membrane on thecisface. Golgi membranes merge with membranes of the endoplasmic reticulum forming an entity with the perinuclear space. All compartments contained enveloped virions. After treatment with brefeldin A, HSV-1 virions aggregated in the perinuclear space and endoplasmic reticulum, while infectious progeny virus was still produced.Conclusions: The data suggest that virions derived by budding at nuclear membranes are intraluminally transported from the perinuclear space via Golgi -endoplasmic reticulum transitions into Golgi cisternae for packaging. Virions derived by budding at nuclear membranes are infective like Us3 deletion mutants, which  accumulate in the perinuclear space. Therefore, i) de-envelopment followed by re-envelopment is not essential for production of infective progeny virus, ii) the process taking place at the outer nuclear membrane is budding not fusion, and iii) naked capsids gain access to the cytoplasmic matrix via impaired nuclear envelope as reported earlier.


1993 ◽  
Vol 178 (6) ◽  
pp. 1935-1946 ◽  
Author(s):  
J W Woods ◽  
J F Evans ◽  
D Ethier ◽  
S Scott ◽  
P J Vickers ◽  
...  

The intracellular distribution of the enzyme 5-lipoxygenase (5-LO) and 5-lipoxygenase-activating protein (FLAP) in resting and ionophore-activated human leukocytes has been determined using immuno-electronmicroscopic labeling of ultrathin frozen sections and subcellular fractionation techniques. 5-LO is a 78-kD protein that catalyzes the conversion of arachidonic acid to leukotrienes. FLAP is an 18-kD membrane bound protein that is essential for leukotriene synthesis in cells. In response to ionophore stimulation, 5-LO translocates from a soluble to a sedimentable fraction of cell homogenates. In activated leukocytes, both FLAP and 5-LO were localized in the lumen of the nuclear envelope. Neither protein could be detected in any other cell compartment or along the plasma membrane. In resting cells, the FLAP distribution was identical to that observed in activated cells. In addition, subcellular fractionation techniques showed > 83% of immunoblot-detectable FLAP protein and approximately 64% of the FLAP ligand binding activity was found in the nuclear membrane fraction. A fractionation control demonstrated that a plasma membrane marker, detected by a monoclonal antibody PMN13F6, was not detectable in the nuclear membrane fraction. In contrast to FLAP, 5-LO in resting cells could not be visualized along the nuclear envelope. Except for weak labeling of the euchromatin region of the nucleus, 5-LO could not be readily detected in any other cellular compartment. These results demonstrate that the nuclear envelope is the intracellular site at which 5-LO and FLAP act to metabolize arachidonic acid, and that ionophore activation of neutrophils and monocytes results in the translocation of 5-LO from a nonsedimentable location to the nuclear envelope.


1977 ◽  
Vol 28 (1) ◽  
pp. 273-281
Author(s):  
M. Schliwa

Resting histiocytes within the dermis and epidermis of the cichlid fish Pterophyllum scalare exhibit an unusual association between stacks of lamellar cisternae and tubular structures greater in diameter than ordinary microtubules (macrotubules) after treatment with 2 × 10(−4) M vinblastine. Macrotubules are found in the intercisternal spaces in a regular side-by-side orientation and extend the entire length of the cisternae. The lamellae seem to be formed as a result of increased membrane proliferation of the outer nuclear membrane; in some instances, cisternae have been observed to be continuous with the nuclear envelope. Since blebbing of the outer nuclear membrane is also observed in untreated histiocytes, lamellae formation is envisaged as hypertrophy of a normally occurring process. The association of lamellae with macrotubules possibly indicates a relationship between membranes and microtubule proteins.


2017 ◽  
Vol 216 (9) ◽  
pp. 2827-2841 ◽  
Author(s):  
Zhao-Ying Ding ◽  
Ying-Hsuan Wang ◽  
Yu-Cheng Huang ◽  
Myong-Chol Lee ◽  
Min-Jen Tseng ◽  
...  

Linker of nucleoskeleton and cytoskeleton (LINC) complexes spanning the nuclear envelope (NE) contribute to nucleocytoskeletal force transduction. A few NE proteins have been found to regulate the LINC complex. In this study, we identify one, Kuduk (Kud), which can reside at the outer nuclear membrane and is required for the development of Drosophila melanogaster ovarian follicles and NE morphology of myonuclei. Kud associates with LINC complex components in an evolutionarily conserved manner. Loss of Kud increases the level but impairs functioning of the LINC complex. Overexpression of Kud suppresses NE targeting of cytoskeleton-free LINC complexes. Thus, Kud acts as a quality control mechanism for LINC-mediated nucleocytoskeletal connections. Genetic data indicate that Kud also functions independently of the LINC complex. Overexpression of the human orthologue TMEM258 in Drosophila proved functional conservation. These findings expand our understanding of the regulation of LINC complexes and NE architecture.


2012 ◽  
Vol 196 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Xiao Zhou ◽  
Katja Graumann ◽  
David E. Evans ◽  
Iris Meier

Inner nuclear membrane Sad1/UNC-84 (SUN) proteins interact with outer nuclear membrane (ONM) Klarsicht/ANC-1/Syne homology (KASH) proteins, forming linkers of nucleoskeleton to cytoskeleton conserved from yeast to human and involved in positioning of nuclei and chromosomes. Defects in SUN–KASH bridges are linked to muscular dystrophy, progeria, and cancer. SUN proteins were recently identified in plants, but their ONM KASH partners are unknown. Arabidopsis WPP domain–interacting proteins (AtWIPs) are plant-specific ONM proteins that redundantly anchor Arabidopsis RanGTPase–activating protein 1 (AtRanGAP1) to the nuclear envelope (NE). In this paper, we report that AtWIPs are plant-specific KASH proteins interacting with Arabidopsis SUN proteins (AtSUNs). The interaction is required for both AtWIP1 and AtRanGAP1 NE localization. AtWIPs and AtSUNs are necessary for maintaining the elongated nuclear shape of Arabidopsis epidermal cells. Together, our data identify the first KASH members in the plant kingdom and provide a novel function of SUN–KASH complexes, suggesting that a functionally diverged SUN–KASH bridge is conserved beyond the opisthokonts.


1959 ◽  
Vol 6 (2) ◽  
pp. 147-156 ◽  
Author(s):  
Michael L. Watson

The term pore complex is proposed for approximately cylindrical formations which are observed with the electron microscope to penetrate the nuclear envelope of cells. Cross-sections of the pore complex are somewhat annular in shape, but differ in appearance depending upon the level of the cross-section with respect to the nuclear surface. An explanation is offered for the apparent discrepancy between the width of pores in sections perpendicular to the nuclear envelope and the width of cross-sections of the pore complex in tangential sections. Channels associated with the pore complex extend deep into the nucleus. Although crescents and spirals of ribonucleoprotein particles were often seen in the immediate vicinity of the outer nuclear membrane, direct association with the pore complex was not observed. Many examples were found of pores that were not covered by a continuous membrane although the possibility of such a covering in some cases is not precluded.


2021 ◽  
Author(s):  
Sunandini Chandra ◽  
Philip J. Mannino ◽  
David J. Thaller ◽  
Nicholas R. Ader ◽  
Megan C. King ◽  
...  

AbstractMechanisms that turnover components of the nucleus and inner nuclear membrane (INM) remain to be fully defined. We explore how components of the INM are selected by a cytosolic autophagy apparatus through a transmembrane nuclear envelope-localized cargo adaptor, Atg39. A split-GFP reporter shows that Atg39 localizes to the outer nuclear membrane (ONM) and thus targets the INM across the nuclear envelope lumen. Consistent with this, sequence elements that confer both nuclear envelope localization and a membrane remodeling activity are mapped to the Atg39 lumenal domain; these lumenal motifs are required for the autophagy-mediated degradation of an integral INM protein. Interestingly, correlative light and electron tomography shows that the overexpression of Atg39 leads to the expansion of the ONM and the enclosure of a network of INM-derived vesicles in the nuclear envelope lumen. Thus, we propose an outside-in model of nucleophagy where INM is delivered into vesicles in the nuclear envelope lumen, which can be targeted by the autophagosome.


2006 ◽  
Vol 17 (4) ◽  
pp. 1790-1801 ◽  
Author(s):  
Matthew D. McGee ◽  
Regina Rillo ◽  
Amy S. Anderson ◽  
Daniel A. Starr

UNC-84 is required to localize UNC-83 to the nuclear envelope where it functions during nuclear migration. A KASH domain in UNC-83 was identified. KASH domains are conserved in the nuclear envelope proteins Syne/nesprins, Klarsicht, MSP-300, and ANC-1. Caenorhabditis elegans UNC-83 was shown to localize to the outer nuclear membrane and UNC-84 to the inner nuclear membrane in transfected mammalian cells, suggesting the KASH and SUN protein targeting mechanisms are conserved. Deletion of the KASH domain of UNC-83 blocked nuclear migration and localization to the C. elegans nuclear envelope. Some point mutations in the UNC-83 KASH domain disrupted nuclear migration, even if they localized normally. At least two separable portions of the C-terminal half of UNC-84 were found to interact with the UNC-83 KASH domain in a membrane-bound, split-ubiquitin yeast two-hybrid system. However, the SUN domain was essential for UNC-84 function and UNC-83 localization in vivo. These data support the model that KASH and SUN proteins bridge the nuclear envelope, connecting the nuclear lamina to cytoskeletal components. This mechanism seems conserved across eukaryotes and is the first proposed mechanism to target proteins specifically to the outer nuclear membrane.


1986 ◽  
Vol 102 (6) ◽  
pp. 2158-2168 ◽  
Author(s):  
R K Pathak ◽  
K L Luskey ◽  
R G Anderson

The crystalloid endoplasmic reticulum (ER), a specialized smooth ER of the compactin-resistant UT-1 cell, is composed of multiple membrane tubules packed together in a hexagonal pattern. This membrane contains large amounts of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, an integral membrane protein that enzymatically regulates endogenous cholesterol biosynthesis. Using morphological and immunocytochemical techniques, we have traced the sequence of events in the biogenesis of this ER when compactin-withdrawn UT-1 cells, which do not have a crystalloid ER, are incubated in the presence of compactin. After 15 h of incubation in the presence of compactin, many cells had profiles of ER cisternae that were juxtaposed to the nuclear envelope and studded with ribosomes on their outer membrane. Both the outer nuclear membrane and the ER membrane contained HMG CoA reductase; however, there was little or no detectable enzyme in rough ER that was free in the cytoplasm. With longer times of incubation in the presence of compactin, these cells had lamellar stacks of smooth ER next to the nuclear envelope that contained HMG CoA reductase. Coordinate with the appearance of the smooth ER, crystalloid ER appeared in the same cell. Often regions of continuity were found between the membrane of the smooth ER and the membrane of the crystalloid ER tubules. These studies suggest that HMG CoA reductase is synthesized along the outer nuclear membrane and in response to increased enzyme synthesis, a membrane emerges from the outer nuclear membrane as smooth ER cisternae, which then transforms into crystalloid ER tubules.


2011 ◽  
Vol 39 (6) ◽  
pp. 1725-1728 ◽  
Author(s):  
Angelika A. Noegel ◽  
Sascha Neumann

Nesprins (nuclear envelope spectrin repeat proteins), also known as SYNE (synaptic nuclear envelope protein), MYNE (myocyte nuclear envelope protein), ENAPTIN and NUANCE, are proteins that are primarily components of the nuclear envelope. The nuclear envelope is a continuous membrane system composed of two lipid bilayers: an inner and an outer nuclear membrane. Nesprins are components of both nuclear membranes and reach into the nucleoplasm and the cytoplasm, where they undergo different interactions and have the potential to influence transcriptional processes and cytoskeletal activities.


Sign in / Sign up

Export Citation Format

Share Document