Enzymological aspects of de novo synthesis of fructooligosaccharides in leaf disks of certain Asteraceae. IV. The activity of sucrose–sucrose 1-fructosyltransferase

1974 ◽  
Vol 52 (6) ◽  
pp. 1369-1377 ◽  
Author(s):  
K. R. Chandorkar ◽  
F. W. Collins

Sucrose–sucrose fructosyltransferase capable of synthesizing the trisaccharide 1F-fructosylsucrose from sucrose was partially purified from crude protein extracts of (1) lettuce leaf disks, which were incubated on a sucrose medium for 72 h, and (2) lettuce leaf midvein–petiole tissue, which normally contains fructosans ranging in degree of polymerization from 3 to about 10–11. Maximum transferase activity was associated with the protein exhibiting an apparent molecular weight of about 100 000 as estimated by gel filtration technique. The transferase was not detected in protein extract of unincubated leaf blade tissue. Evidence presented strongly suggests that the transferase was synthesized de novo in response to incubation of leaf disks on sucrose medium.

1973 ◽  
Vol 51 (10) ◽  
pp. 1931-1937 ◽  
Author(s):  
F. W. Collins ◽  
K. R. Chandorkar

De novo synthesis of fructosans in leaf disks of certain Asteraceae incubated on phosphate-buffered 5% sucrose medium was accompanied by increases in fresh and dry weight and a considerable enhancement in the rate of respiration. Radiorespirometry using 14C-sucrose showed that the respiratory pool was kept at the expense of both exogenous and endogenous substrates. During the initial 24 h of incubation, about 80% or more of the total respiratory carbon was derived from the exogenously supplied sugar. This proportion gradually decreased during the last 48 h to a final value of about 50%. Of the total sugar taken up by the leaf disks, less than 20% was utilized in respiration while more than four-fifths was available for further metabolism including fructosan formation. The respiratory quotient values remained relatively unchanged from 0.8 to 0.9 throughout most of the incubation period and suggested that endogenous substrate other than carbohydrate was drawn into respiratory metabolism.


1972 ◽  
Vol 50 (2) ◽  
pp. 295-303 ◽  
Author(s):  
K. R. Chandorkar ◽  
F. W. Collins

Incubation of leaf disks of certain genera of Asteraceae on phosphate-buffered, 5% sugar solutions resulted in the de novo synthesis of a homologous series of inulin-type fructosans. Fructo-oligosaccharides of degree of polymerization 3 to 21 or 22 were present in dandelion, chicory, lettuce, hawkweed, and sow thistle leaf disks after 72 h, but not in dahlia or sunflower. Synthesis occurred with media containing either fructose, glucose, or sucrose, but not with mannose or galactose. Fructosan formation began after about 36 h and continued with the sequential synthesis of homologs of increasing chain length. After 72 h, the relationship between the amount of polymer synthesized and the chain length appeared to be logarithmically biphasic, consisting of two series of exponentially decreasing values. Incubation for 120 h however, resulted in a distribution more closely resembling that found naturally in fructosan storing tissues. 14C-tracer studies showed that both the endogenous and exogenous carbohydrate sources contribute to fructosan synthesis. Fructo-oligosaccharide formation was blocked by cycloheximide, puromycin, and actinomycin D but not chloramphenicol, indicating that cytoplasmic protein and nucleic acid synthesis was required. Analysis of fructosan formation during incubation suggests a close correlation between transfructosylation mechanisms observed in vitro and the de novo synthesis of fructosans in vivo.


1990 ◽  
Vol 63 (03) ◽  
pp. 499-504 ◽  
Author(s):  
A Electricwala ◽  
L Irons ◽  
R Wait ◽  
R J G Carr ◽  
R J Ling ◽  
...  

SummaryPhysico-chemical properties of recombinant desulphatohirudin expressed in yeast (CIBA GEIGY code No. CGP 39393) were reinvestigated. As previously reported for natural hirudin, the recombinant molecule exhibited abnormal behaviour by gel filtration with an apparent molecular weight greater than that based on the primary structure. However, molecular weight estimation by SDS gel electrophoresis, FAB-mass spectrometry and Photon Correlation Spectroscopy were in agreement with the theoretical molecular weight, with little suggestion of dimer or aggregate formation. Circular dichroism studies of the recombinant molecule show similar spectra at different pH values but are markedly different from that reported by Konno et al. (13) for a natural hirudin-variant. Our CD studies indicate the presence of about 60% beta sheet and the absence of alpha helix in the secondary structure of recombinant hirudin, in agreement with the conformation determined by NMR studies (17)


1997 ◽  
Vol 78 (05) ◽  
pp. 1372-1380 ◽  
Author(s):  
André L Fuly ◽  
Olga L T Machado ◽  
Elias W Alves ◽  
Célia R Carlinis

SummaryCrude venom from Lachesis muta exhibited procoagulant, proteolytic and phospholipase A2 activities. A phospholipase A2, denoted LM-PLA2 was purified from L. muta venom to homogeneity, through a combination of chromatographic steps involving gel-filtration on Sephacryl S-200 HR and reverse phase chromatography on a C2/C18 column. LM-PLA2 presented a single polypeptide chain with an isoelectric point at pH 4.7 and apparent molecular weight of 17 kDa. Partial aminoacid sequence indicated a high degree of homology for LM-PLA2 with other PLA2 from different sources.LM-PLA2 displayed a potent enzymatic activity as measured by indirect hemolysis of red blood cells but it was neither lethal when injected i.p. into mice nor did it present anticoagulant activity. Furthermore, LM-PLA2 displayed a moderate inhibitory activity on the aggregation of rabbit platelets induced by low levels of ADP, thrombin and arachidonate. In contrast, platelet aggregation induced by high doses of collagen was strongly inhibited by LM-PLA2 as well as ATP-release. Treatment of the protein with p-bromophenacyl bromide or 2-mercapto-ethanol, as well as thermal inactivation studies, suggested that the platelet inhibitory effect of LM-PLA2 is dependent on its enzymatic activity. Thus, the platelet inhibitory activity of LM-PLA2 was shown to be dependent on the hydrolysis of plasma phospholipids and/or lipoproteins, most probably those rich in phosphatidylcholine. Surprisingly, lyso-phosphatidylcholine released by LM-PLA2 from plasma was shown to preferentially inhibited collagen-induced platelet aggregation, in contrast to other PLA2s, whose plasma hydrolytic products indistinctly affect platelet’s response to several agonists.


1996 ◽  
Vol 7 (10) ◽  
pp. 1535-1546 ◽  
Author(s):  
J P Paccaud ◽  
W Reith ◽  
J L Carpentier ◽  
M Ravazzola ◽  
M Amherdt ◽  
...  

We screened a human cDNA library with a probe derived from a partial SEC23 mouse homologue and isolated two different cDNA clones (hSec23A and hSec23B) encoding proteins of a predicted molecular mass of 85 kDa. hSec23Ap and hSec23Bp were 85% identical and shared 48% identity with the yeast Sec23p. Affinity-purified anti-hSec23A recognized a protein of approximately 85 kDa on immunoblots of human, mouse, and rat cell extracts but did not recognize yeast Sec23p. Cytosolic hSec23Ap migrated with an apparent molecular weight of 350 kDa on a gel filtration column, suggesting that it is part of a protein complex. By immunoelectron microscopy, hSec23Ap was found essentially in the ribosome-free transitional face of the endoplasmic reticulum (ER) and associated vesicles. hSec23Ap is a functional homologue of the yeast Sec23p as the hSec23A isoform complemented the temperature sensitivity of the Saccharomyces cerevisiae sec23-1 mutation at a restrictive temperature of 34 degrees C. RNase protection assays indicated that both hSec23 isoforms are coexpressed in various human tissues, although at a variable ratio. Our data demonstrate that hSec23Ap is the functional human counterpart of the yeast COPII component Sec23p and suggest that it plays a similar role in mammalian protein export from the ER. The exact function of hSec23Bp remains to be determined.


1976 ◽  
Vol 54 (2) ◽  
pp. 120-129 ◽  
Author(s):  
W. S. Rickert ◽  
P. A. McBride-Warren

The reaction of Mucor miehei protease with concanavalin A was followed by a turbidimetric assay in the pH range 5–8. At pH 4.0, no turbidity developed but binding of the enzyme to concanavalin A could be demonstrated by gel filtration. Two fractions of apparent molecular weight 65 000 and 52 000 were isolated, the 65 000 molecular weight species apparently representing a protomer of concanavalin A (24 000) bound to the enzyme. An analysis of the circular dichroism spectrum of this complex suggested that protomer binding results in a conformational change in the enzyme which is associated with a 30% increase in proteolytic activity.At pH 6.0, the enzyme was strongly bound to columns of concanavalin A Sepharose but could be removed by including α-methyl D-glucoside and NaCl in the elution buffer. Some column degradation occurred at room temperature but was not detectable at 4 °C where rapid elution of the enzyme resulted in a greater than 90% yield of highly active protein. Periodate-oxidized Mucor miehei protease and Mucor rennin did not react with concanavalin A and were not bound to the affinity column.


1976 ◽  
Vol 156 (1) ◽  
pp. 143-150 ◽  
Author(s):  
R H Quarles

Rats (14 days old) were injected with [14c]fucose and young adult rats with [3H]fucose in order to label the myelin-associated glycoproteins. As previously reported, the major [14C]fucose-labelled glycoprotein in the immature myelin had a higher apparent molecular weight on sodium dodecyl sulphate/polyacrylamide gels that the [3H]fucose-labelled glycoprotein in mature myelin. This predominant doubly labelled glycoprotein component was partially purified by preparative gel electrophoresis and converted to glycopeptides by extensive Pronase digestion. Gel filtration on Sephadex G-50 separated the glycopeptides into several clases, which were designted A,B, C AND D, from high to low molecular weight. The 14C-labelled glycopeptides from immature myeline were enriched in the highest-molecular-weight class A relative to the 3H-labelled glycopeptides from mature myelin. Neuraminidase treatment of the glycoprotein before Pronase digestion greatly decreased the proportion of glycopeptides fractionating in the higher-molecular-weight classes and largely eliminated the developmental differences that were apparent by gel filtration. However, neuraminidase treatment did not decrease the magnitude of the developmental difference revealed by electrophoresing the intact glycoprotein on sodium dodecyl sulphate gels, although it did decrease the apparent molecular weight of the glycoprotein from both the 15-day-old and adult rats by an amount comparable in magnitude to that developmental difference. The results from gel filtration of glycopeptides indicate that there is a higher content of large molecular weight, sialic acid-rich oligosaccharide units in the glycoprotein of immature myelin. However, the higher apparent molecular weight for the glycoprotein from 15-day-old rats on sodium dodcyl sulphate gels is not due primarily to its higher sialic acid content.


1993 ◽  
Vol 289 (2) ◽  
pp. 453-461 ◽  
Author(s):  
M Hrmova ◽  
G B Fincher

Three (1->3)-beta-D-glucan glucanohydrolase (EC 3.2.1.39) isoenzymes GI, GII and GIII were purified from young leaves of barley (Hordeum vulgare) using (NH4)2SO4 fractional precipitation, ion-exchange chromatography, chromatofocusing and gel-filtration chromatography. The three (1->3)-beta-D-glucanases are monomeric proteins of apparent M(r)32,000 with pI values in the range 8.8-10.3. N-terminal amino-acid-sequence analyses confirmed that the three isoenzymes represent the products of separate genes. Isoenzymes GI and GII are less stable at elevated temperatures and are active over a narrower pH range than is isoenzyme GIII, which is a glycoprotein containing 20-30 mol of hexose equivalents/mol of enzyme. The preferred substrate for the enzymes is laminarin from the brown alga Laminaria digitata, an essentially linear (1->3)-beta-D-glucan with a low degree of glucosyl substitution at 0-6 and a degree of polymerization of approx. 25. The three enzymes are classified as endohydrolases, because they yield (1->3)-beta-D-oligoglucosides with degrees of polymerization of 3-8 in the initial stages of hydrolysis of laminarin. Kinetic analyses indicate apparent Km values in the range 172-208 microM, kcat. constants of 36-155 s-1 and pH optima of 4.8. Substrate specificity studies show that the three isoenzymes hydrolyse substituted (1->3)-beta-D-glucans with degrees of polymerization of 25-31 and various high-M(r), substituted and side-branched fungal (1->3;1->6)-beta-D-glucans. However, the isoenzymes differ in their rates of hydrolysis of a (1->3;1->6)-beta-D-glucan from baker's yeast and their specific activities against laminarin vary significantly. The enzymes do not hydrolyse (1->3;1->4)-beta-D-glucans, (1->6)-beta-D-glucan, CM-cellulose, insoluble (1->3)-beta-D-glucans or aryl beta-D-glycosides.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Todd Blevins ◽  
Ram Podicheti ◽  
Vibhor Mishra ◽  
Michelle Marasco ◽  
Jing Wang ◽  
...  

In Arabidopsis thaliana, abundant 24 nucleotide small interfering RNAs (24 nt siRNA) guide the cytosine methylation and silencing of transposons and a subset of genes. 24 nt siRNA biogenesis requires nuclear RNA polymerase IV (Pol IV), RNA-dependent RNA polymerase 2 (RDR2) and DICER-like 3 (DCL3). However, siRNA precursors are mostly undefined. We identified Pol IV and RDR2-dependent RNAs (P4R2 RNAs) that accumulate in dcl3 mutants and are diced into 24 nt RNAs by DCL3 in vitro. P4R2 RNAs are mostly 26-45 nt and initiate with a purine adjacent to a pyrimidine, characteristics shared by Pol IV transcripts generated in vitro. RDR2 terminal transferase activity, also demonstrated in vitro, may account for occasional non-templated nucleotides at P4R2 RNA 3’ termini. The 24 nt siRNAs primarily correspond to the 5’ or 3’ ends of P4R2 RNAs, suggesting a model whereby siRNAs are generated from either end of P4R2 duplexes by single dicing events.


2000 ◽  
Vol 74 (2) ◽  
pp. 851-863 ◽  
Author(s):  
Guangxiang Luo ◽  
Robert K. Hamatake ◽  
Danielle M. Mathis ◽  
Jason Racela ◽  
Karen L. Rigat ◽  
...  

ABSTRACT Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn2+ than in the presence of Mg2+. When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a “copy-back” mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3′ end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (≥50 μM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo.


Sign in / Sign up

Export Citation Format

Share Document