Analysis of the effects of the spotted tentiform leafminer (Phyllonorycter blancardella) on the photosynthetic characteristics of apple leaves

1982 ◽  
Vol 60 (12) ◽  
pp. 2734-2740 ◽  
Author(s):  
J. T. A. Proctor ◽  
J. M. Bodnar ◽  
W. J. Blackburn ◽  
R. L. Watson

Infestation of apple leaves with the spotted tentiform leafminer (STLM) reduced their net photosynthetic rate (Pn) over a range of light intensities. At a saturating irradiance level of 1240 μE∙m−2∙s−1 and 20 mines per leaf, 32.9% of the leaf area was injured but Pn was decreased by only 23.2%. Examination of parameters in a model for leaf photosynthesis showed a reduction in maximum photosynthetic rate (asymptotic value of the light-response curve) and mesophyll conductance but not in photochemical efficiency or dark respiration. The STLM injury had no effect on transpiration, stomatal conductance, and a slight effect on internal CO2 concentration and water-use efficiency. Mining reduced chlorophyll content of the leaves and this reduced the chlorophyll fluorescence of the mined areas. Tissue around the mines had a relatively high fluorescence reading confirming the Pn measurements and suggesting that this technique was suitable for these and similar studies. Mining by the STLM disrupts the photosynthetic apparatus of the leaf and affects a number of mechanisms in the photosynthetic process. Correlating these effects with field observations will help in determining economic thresholds for this insect.

1996 ◽  
Vol 121 (6) ◽  
pp. 1103-1111 ◽  
Author(s):  
Cheryl R. Hampson ◽  
Anita N. Azarenko ◽  
John R. Potter

In hazelnut (Corylus avellana L.), vigorous vegetative growth and traditional orchard practices that include little or no pruning combine to produce a dense, shady canopy. A study designed to quantify the effect of shade on reproduction and photosynthetic rate in this shade-tolerant species was undertaken to assess whether some degree of pruning might improve productivity. Shade cloth was used to exclude 30%, 47%, 63%, 73%, or 92% of ambient sunlight from whole `Ennis' and `Barcelona' trees from mid-May until harvest. Photosynthetic light response curves were obtained for leaves that had developed in full sunlight, deep inside the canopy of unshaded trees, or in 92% shade. Light-saturated net photosynthetic rates were 12.0, 6.1, and 9.3 μmol·m-2·s-1 of CO2 and dark respiration rates were 2.0, 1.1, and 0.7 μmol·m-2·s-1 of CO2, respectively, for the three light regimes. Light-saturated photosynthetic rates of leaves from 30% or 63% shade differed little from the control (0% shade). Area per leaf increased by 49% and chlorophyll concentration (dry weight basis) by 157% as shading increased from 0% to 92%. Shading to 92% reduced specific leaf weight (68%), stomatal density (30%), light compensation point (69%), and dark respiration rate (63%) compared to controls. Female inflorescence density declined by about one-third and male inflorescence density by 64% to 74% in the most heavily shaded trees of both cultivars compared to controls. Shade was more detrimental to yield than flowering: yield per tree dropped by >80%, from 2.9 to 3.4 kg in full sun to 0.6 to 0.9 kg in 92% shade. Shade reduced yield primarily by decreasing nut number and secondarily by decreasing nut size. The incidence of several kernel defects increased as shade increased. Therefore, hazelnut leaves showed considerable capacity to adapt structurally and functionally to shade, but improving light penetration into the canopy would probably increase orchard productivity.


2010 ◽  
Vol 37 (8) ◽  
pp. 713 ◽  
Author(s):  
Lalith D. B. Suriyagoda ◽  
Hans Lambers ◽  
Megan H. Ryan ◽  
Michael Renton

Age-dependent changes in leaf photosynthetic characteristics (i.e. parameters of the light response curve (maximum photosynthetic rate (Pmax), quantum yield (Φ) and the convexity parameter (θ)), stomatal conductance (gs) and dark respiration rate (Rd)) of an exotic perennial legume, Medicago sativa L. (lucerne), and two potential pasture legumes native to Australia, Cullen australasicum (Schltdl.) J.W. Grime and Cullen pallidum A. Lee, grown in a glasshouse for 5 months at two phosphorus (P) levels (3 (P3) and 30 (P30) mg P kg–1 dry soil) were tested. Leaf appearance rate and leaf area were lower at P3 than at P30 in all species, with M. sativa being the most sensitive to P3. At any leaf age, photosynthetic characteristics did not differ between P treatments. However, Pmax and gs for all the species and Φ for Cullen species increased until full leaf expansion and then decreased. The convexity parameter, θ, did not change with leaf age, whereas Rd decreased. The estimates of leaf net photosynthetic rate (Pleaf) obtained through simulations at variable Pmax and Φ were lower during early and late leaf developmental stages and at lower light intensities than those obtained when Φ was assumed to be constant (e.g. for a horizontally placed leaf, during the 1500°C days developmental period, 3 and 19% reduction of Pleaf at light intensities of 1500 and 500 µmol m–2 s–1, respectively). Therefore, developmental changes in leaf photosynthetic characteristics should be considered when estimating and simulating Pleaf of these pasture species.


1977 ◽  
Vol 4 (5) ◽  
pp. 723 ◽  
Author(s):  
PR Smith ◽  
TF Neales

Infection of peach leaves with the viruses causing 'peach rosette and decline disease' reduced their net photosynthetic rate (PN) over a range of light intensities. The Pmax value, derived from the asymptotic value of the light-response curve of young leaves was significantly reduced by 13%. The reduction of PN was partially attributable to increases in both the gas-phase (r1) and residual (rm) resistances. Virus infection, however, had no effect on the PN values of older leaves, as leaf senescence effects predominated over any effects of infection. The 'dark' respiration rate of young leaves was increased by virus infection by c. 50 %, but not significantly so. The constants of the polynomial regressions, relating PN to the environmental variables of ambient CO2 concentration and irradiance, were used as indices of the leaf photosynthetic characteristics. The photochemical efficiency of young infected leaves was 28 % less than that of healthy controls, but infection had no effect on older leaves. The mean total leaf conductance to CO2 transfer was also reduced by 30 % (not significantly) in infected leaves. The CO2 and light compensation points were unaffected. It is concluded that the (previously reported) large, inhibiting effects of virus infection on the growth of young peach trees are not attributable to these comparatively less severe effects on leaf photosynthesis but rather to effects on leaf growth.


2020 ◽  
Vol 41 (1) ◽  
pp. 61
Author(s):  
Ling Liao ◽  
Yi Ronga ◽  
Xia Qiua ◽  
Tiantian Donga ◽  
Zhihui Wang

Grafting is an effective measure to improve the photosynthetic rate of citrus. The light responses of photosynthesis in leaves of two-year old grafted Huangguogan (citrus cultivar Huangguogan), Huanggougan / Trifoliate (HG/PT), Huanggougan / Tangerine (HG/CR), and Huanggougan / Ziyang Xiangcheng (HG/CJ) were studied using the LI-COR 6400 portable photosynthesis system. Light-response curves and photosynthetic parameters were analyzed and fitted using the rectangular hyperbola model (RHM), the exponential model (EM), the non rectangular hyperbola model (NRHM), and the modified rectangular hyperbola model (MRHM). The results showed that: (1) Grafting can change the photosynthetic characteristics of Huangguogan, and the value of photosynthesis rate of HG/CJ is the greatest; (2) The light-response curves of net photosynthetic rate (PN), the light compensation point (LCP), and the dark respiration rate (RD) were well fitted using the above four models. The modified rectangular hyperbola was the best model in fitting the data; the nonrectangular hyperbola model was the second, and the rectangular hyperbola model was the poorest one.


2004 ◽  
Vol 82 (2) ◽  
pp. 177-184 ◽  
Author(s):  
Keith R Skene

A study of the fluorescence characteristics, net photosynthetic rate, and dark respiration of nine species of intertidal macroalgae, from three divisions and from different positions on a rocky shore on the east coast of Scotland, was carried out to address the following questions: (i) Do algae at different positions along the shore respond differently to the stresses at these positions in terms of photosynthetic efficiency, net photosynthetic rate, and respiration, when fully hydrated? (ii) Do algal species at different positions respond differently, in terms of function, to desiccation, and can these responses be correlated with tolerance or intolerance to desiccation in terms of recovery? The present study demonstrated that algal species that occur higher on the shore have greater photosynthetic rates, respiration rates, maximum fluorescence / initial fluorescence ratios, and photosynthetic efficiencies while fully hydrated than do species that live lower on the shore. These findings point towards an increase in time-use efficiency in species that have less time available for productivity or nutrient uptake, since species at a greater height on the shore spend less time in a state of sufficient hydration to photosynthesize. Furthermore, algae higher up the shore, which can recover from desiccation, have significantly different fluorescence characteristics from nonrecoverers, particularly in the area above the Kautsky curve between initial fluorescence and maximum fluorescence. This is the first biophysical evidence relating to a mechanism for desiccation tolerance in macroalgae, and it is discussed within the context of other examples of increasing rates of physiological processes with decreasing time.Key words: fluorescence, zonation, function, rocky shore, Fucus.


2018 ◽  
Vol 31 (2) ◽  
pp. 306-314
Author(s):  
RENATO FRANCISCO DA SILVA SOUZA ◽  
DJAIL SANTOS ◽  
WALTER ESFRAIN PEREIRA ◽  
FABRÍCIO LOPES DE MACEDO ◽  
JHONY VENDRUSCOLO

ABSTRACT The effects of soil compaction on crop growth and productivity have been well studied in recent years, however, studies on the physiological responses of crops to compaction are scarce. The objective of this study was to evaluate the effect of soil compaction on gas exchange, and photochemical efficiency of lima bean (Phaseolus lunatus L.) genotypes of different growth habits. The experimental design was a randomized block in a 3×4 factorial arrangement, with three lima bean genotypes (Branca-Pequena, Orelha-de-Vó and Roxinha) and four compaction levels (soil densities of 1.1, 1.3, 1.5 and 1.7 g cm-3), with four replications. The following variables were evaluated at 38 days after sowing: photosynthetic rate (A), leaf transpiration (E), stomatal conductance (gs), internal CO2 concentration (Ci), instantaneous water use efficiency (WUE), intrinsic water use efficiency (iWUE), instantaneous carboxylation efficiency (iCE) and photochemical efficiency (Fo, Fm, Fv and Fv/Fm). The data were subjected to analysis of variance at 5% probability by the F test. The genotypes showed a reduction in the photosynthetic rate with increasing soil compaction. The soil compaction affected the photochemical efficiency of the genotype Orelha-de-Vó, with the Fm and Fv fitting to the linear model, and the Fv/Fm fitting to the quadratic model. The genotype Orelha-de-Vó had the highest rate of E and gs at the soil densities of 1.24 and 1.29 g cm-3, respectively. Regarding the photosynthetic rate, the genotype Roxinha is more efficient than Branca-Pequena at the soil density of 1.7 g cm -3.


HortScience ◽  
2017 ◽  
Vol 52 (11) ◽  
pp. 1464-1470 ◽  
Author(s):  
Lingyun Yuan ◽  
Yujie Yuan ◽  
Shan Liu ◽  
Jie Wang ◽  
Shidong Zhu ◽  
...  

High temperature (HT) is a major environmental stress limiting oversummer production of nonheading Chinese cabbage (NHCC, Brassica campestris ssp. chinensis Makino). In the present study, the effects of HT on photosynthetic capacity, including light reaction and carbon assimilation, were completely investigated in two NHCC, ‘xd’ (heat-tolerant), and ‘sym’ (heat-susceptible). The two genotypes showed significant differences in plant morphology, photosynthetic capacity, and photosynthate metabolism (carboassimilation). HT caused a decrease in photosynthesis, chlorophyll contents, and photochemical activity in NHCC. However, these main photosynthetic-related parameters, including net photosynthetic rate (PN), maximal photochemical efficiency of PSII (Fv/Fm), and total chlorophyll content in ‘xd’, were significantly higher than those of ‘sym’ plants. The antioxidant contents and antioxidative enzyme activities of ascorbic acid-reduced glutathione cycle in the chloroplast of ‘xd’ were significantly higher than those of ‘sym’. Microscopic analyses revealed that HT affected the structure of photosynthetic apparatus and membrane integrity to a different extent, whereas ‘xd’ could maintain a better integrated chloroplast shape and thylakoid. Inhibited light reaction also hampered carbon assimilation, resulting in a decline of carboxylation efficiency and imbalance of carbohydrate metabolism. However, larger declined extents in these data were presented in ‘sym’ (heat-susceptible) than ‘xd’ (heat-tolerant). The heat-tolerant genotype ‘xd’ had a better capacity for self-protection by improved light reaction and carbon assimilation responding to HT stress.


Helia ◽  
2016 ◽  
Vol 39 (64) ◽  
pp. 1-19 ◽  
Author(s):  
Alan W. Bowsher ◽  
Ethan F. Milton ◽  
Lisa A. Donovan

AbstractWater availability is a major factor limiting plant productivity in both natural and agronomic systems. Identifying putative drought resistance traits in crops and their wild relatives may be useful for improving crops grown under water-limiting conditions. Here, we tested the expectation that a desert-dwelling sunflower species, Helianthus niveus ssp. tephrodes (TEPH) would exhibit root and leaf traits consistent with greater ability to avoid drought than cultivated sunflower H. annuus (ANN) in a common garden environment. We compared TEPH and ANN at both the seedling and mature stages under well-watered greenhouse conditions. For traits assessed at the seedling stage, TEPH required a longer time to reach a rooting depth of 30 cm than ANN, and the two species did not differ in root:total biomass ratio at 30 cm rooting depth, contrary to expectations. For traits assessed at the mature stage, TEPH had a higher instantaneous water use efficiency and photosynthetic rate on a leaf area basis, but a lower photosynthetic rate on a mass basis than ANN, likely due to TEPH having thicker, denser leaves. Contrary to expectations, ANN and TEPH did not differ in leaf instantaneous stomatal conductance, integrated water-use efficiency estimated from carbon isotope ratio, or nitrogen concentration. However, at both the seedling and mature stages, TEPH exhibited a lower normalized difference vegetative index than ANN, likely due to the presence of dense leaf pubescence that could reduce heat load and transpirational water loss under drought conditions. Thus, although TEPH root growth and biomass allocation traits under well-watered conditions do not appear to be promising for improvement of cultivated sunflower, TEPH leaf pubescence may be promising for breeding for drought-prone, high radiation environments.


Sign in / Sign up

Export Citation Format

Share Document