Stigma development and the stigmatic cuticle of Medicago scutellata

1985 ◽  
Vol 63 (4) ◽  
pp. 813-818 ◽  
Author(s):  
G. L. Kreitner ◽  
E. L. Sorensen

The self-fertile annual Medicago species evolved from the cross-pollinated perennial species. We used light and electron microscopy to study the development and structure of the stigma in annual tetraploid Medicago scutellata (L.) Mill to help elucidate the mechanism of self-pollination. Immature stigmatic cells have extensive lipid deposits. During development, stigmatic cells become separated and cellular lipid is transferred to intercellular spaces as part of the copious stigmatic secretion. The cuticle of the stigma is lifted away from underlying cell walls and confines secretion around stigmatic cells. The cuticle is thin, about 75 nm, and is composed mainly of a single layer traversed by dense strands. The cuticle is virtually always disrupted during late stages of flower maturation, as evidenced by penetration of stain into the stigma. Self-pollination may occur without flower tripping.

1983 ◽  
Vol 61 (3) ◽  
pp. 837-849 ◽  
Author(s):  
N. Sangduen ◽  
G. L. Kreitner ◽  
E. L. Sorensen

The embryo of perennial Medicago sativa L. and annual M. scutellata (L.) Mill. have similar growth stages, but the perennial embryo is smaller and its rate of growth is slower than that of the annual by about 3 days. Transfer cells in the suspensor and embryo sac of late heart stages suggest different major pathways of nutrient flow in the two species. Transfusion tissue at the base of the embryo sac in the ovule of M. scutellata may facilitate solute transport and promote rapid embryo growth. Plastids in the suspensor cells of heart and late heart stages of the two species contain a dense matrix, membrane-bounded plastid vacuoles, starch, and a dense core. The plastid core in M. sativa has stacked tiers of straight tubules about 24 nm in diameter, suggesting that these specialized plastids are like tubular chromoplasts. Plastid vacuoles arise from the periphery of dense cores and apparently discharge electron-translucent contents into the suspensor cytoplasm. Plastid vacuoles may play a role in suspensor metabolism and thus influence embryo development.


Reproduction ◽  
2000 ◽  
pp. 221-228 ◽  
Author(s):  
HF Irving-Rodgers ◽  
RJ Rodgers

Different morphological phenotypes of follicular basal lamina and of membrana granulosa have been observed. Ten preantral follicles (< 0. 1 mm), and 17 healthy and six atretic antral follicles (0.5-12 mm in diameter) were processed for light and electron microscopy to investigate the relationship the between follicular basal lamina and membrana granulosa. Within each antral follicle, the shape of the basal cells of the membrana granulosa was uniform, and either rounded or columnar. There were equal proportions of follicles </= 4 mm in diameter with columnar basal cells and with rounded basal cells. Larger follicles had only rounded basal cells. Conventional basal laminae of a single layer adjacent to the basal granulosa cells were observed in healthy follicles at the preantral and antral stages. However, at the preantral stage, the conventional types of basal lamina were enlarged or even partially laminated. A second type of basal lamina, described as 'loopy', occurred in about half the preantral follicles and in half the antral follicles </= 4 mm diameter. 'Loopy' basal laminae were not observed in larger follicles. 'Loopy' basal laminae were composed of basal laminae aligning the basal surface of basal granulosa cells, but with additional layers or loops often branching from the innermost layer. Each loop was usually < 1 microm long and had vesicles (20-30 nm) attached to the inner aspect. Basal cellular processes were also common, and vesicles could be seen budding off from these processes. In antral follicles, conventional basal laminae occurred in follicles with rounded basal granulosa cells. Other follicles with columnar cells, and atretic follicles, had the 'loopy' basal lamina phenotype. Thus, follicles have different basal laminae that relate to the morphology of the membrana granulosa.


2019 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
T Ljubka ◽  
O Tsarenko ◽  
I Tymchenko

The investigation of macro- and micromorphological peculiarities of seeds of four species of genus Epipactis (Orchidaceae) of Ukrainian flora were carried out. The genus Epipactis is difficult in the in in taxonomic terms and for its representatives are characterized by polymorphism of morphological features of vegetative and generative organs of plants and ability of species to hybridize. The aim of the research was to perform a comparative morphological study of seeds of E. helleborine, E. albensis, E. palustris, E. purpurata and to determine carpological features that could more accurately identify species at the stage of fruiting. A high degree of variation in the shape of the seeds in different populations within the species and overlap of most quantitative carpological characteristics of studied species are noted. There were no significant differences in micromorphological features of the structure of the testa at species or population level. The reticulate surface of the testa is characteristic of all species, the cells of testa are mostly elongated, penta-hexagonal, individual cells almost isodiametric-pentagonal. From the micropillary to the chalasal end, a noticeable change in the shape and size of the seed coat cells is not observed. There are no intercellular spaces, the anticlinal walls of adjacent cells are intergrown and the boundaries between them become invisible. The outer periclinal walls have a single, mainly longitudinal thin ribbed thickenings. Anticlinal cell walls are thick, dense, smooth. The longitudinal Anticlinal walls are almost straight, transverse - straight or sometimes curved in some cells. Epicuticular deposits on the periclinal walls are absent. It is concluded that the use of macro and micromorphological characteristics of seeds of these species for clearer diagnosis at the stage of fruiting is low informative.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950090
Author(s):  
HAIXIA YU ◽  
XIN PAN ◽  
WEIMING YANG ◽  
WENFU ZHANG ◽  
XIAOWEI ZHUANG

Bamboo material is widely used in outdoor applications. However, they are easily degraded when exposed to sunlight, their smooth surface will gradually turn to rough, and small cracks will appear and finally develop to large cracks. The paper presents a first-time investigation on the microstructure changes in the tangential section of Moso bamboo (Phyllostachys pubescens Mazel) radiated by artificial UV light. The results showed that the cracks mainly appeared at intercellular spaces of fibers where lignin content was high, the parenchyma cell walls and neighbor pits where the cell wall was very thin and more vulnerable than the other parts. In addition, the part of raised area and pit cavity tended to absorb more UV light radiation and showed more and larger cracks than the otherwhere. Cracks at the intercellular spaces of fibers were larger and bigger than those on the parenchyma cell walls. The cracks on the pits of the parenchyma cell walls normally appeared at one pit and then extended to the several surrounding pits. Bordered pits cavity showed more and larger cracks than the pits on the thin wall cells. The simple pits on the thick wall cells and the fiber cells were unaffected by UV radiation.


2007 ◽  
Vol 24 (2) ◽  
pp. 436-441 ◽  
Author(s):  
Rosemary I. Egonmwan

The late stages of embryogenesis in the achatinid land snail Limicolariaflammea (Müller, 1774) were described using light and electron microscopy. Embryos at various stages of development were present in the eggs during the first hour after they were laid, from 4-cell blastulae to morulae and fairly advanced stages. The advanced embryo which was fully developed on the second day bears a long cephalic sac, first to be developed, attached to the embryo and a podocyst which is attached to the foot of the embryo. Both of these structures are reduced in size as embryogenesis progresses until they finally disappear at about the 7th day after the egg was deposited. The embryonic shell was apparent on the second day and spiral coiling was apparent at about day 5. The spiral shell had one whorl when formed and more spirals were added so that at hatching the young snails had three whorls.


2011 ◽  
Vol 9 (69) ◽  
pp. 734-743 ◽  
Author(s):  
Rafael Maia ◽  
Regina H. F. Macedo ◽  
Matthew D. Shawkey

Avian plumage colours are model traits in understanding the evolution of sexually selected ornamental traits. Paradoxically, iridescent structural colours, probably the most dazzling of these traits, remain the most poorly understood. Though some data suggest that expression of bright iridescent plumage colours produced by highly ordered arrays of melanosomes and keratin is condition-dependent, almost nothing is known of their ontogeny and thus of any developmental mechanisms that may be susceptible to perturbation. Here, we use light and electron microscopy to compare the ontogeny of iridescent male and non-iridescent female feathers in blue-black grassquits. Feather barbules of males contain a single layer of melanosomes bounded by a thin layer of keratin-producing blue iridescent colour, while those of females contain disorganized melanosomes and no outer layer. We found that nanostructural organization of male barbules occurs late in development, following death of the barbule cell, and is thus unlikely to be under direct cellular control, contrary to previous suggestions. Rather, organization appears to be caused by entropically driven self-assembly through depletion attraction forces that pin melanosomes to the edge of barbule cells and to one another. These forces are probably stronger in developing barbules of males than of females because their melanosomes are (i) larger, (ii) more densely packed, and (iii) more homogeneously distributed owing to the more consistent shape of barbules during keratinization. These data provide the first proposed developmental pathway for iridescent plumage colours, and suggest that any condition dependence of iridescent barbules is likely driven by factors other than direct metabolic cost.


1997 ◽  
Vol 110 (16) ◽  
pp. 1919-1934
Author(s):  
M. Murate ◽  
Y. Kishimoto ◽  
T. Sugiyama ◽  
T. Fujisawa ◽  
H. Takahashi-Iwanaga ◽  
...  

Hydra tissue consists of the ectodermal and the endodermal layers. When the two layers were separated by procaine treatment and then recombined, the ectodermal epithelial cells spread as a single cell layer over the endoderm as in epiboly in vertebrate embryogenesis, and the resultant spherical structure subsequently regenerated into a complete hydra. In this study, light and electron microscopy were used to examine the structural changes which took place in the cells and tissue during this epibolic ectodermal spreading process. Within a few hours after tissue recombination, the endoderm underwent dramatic changes; it lost its epithelial sheet organization, and turned into a mass of irregularly shaped cells without the apical-basal cell polarity initially present. In contrast, the ectoderm maintained its basic epithelial sheet organization as it spread over the endoderm. Later, the endodermal epithelial cells reorganized themselves into a single-layered epithelial sheet underneath the spreading ectodermal layer. The resultant spherical structure consisted of a single layer of ectodermal epithelial cells outside, a single layer of endodermal epithelial cells inside, and an empty cavity in the center as in normal hydra tissue. This structure regenerated into hydra in the following days. These and other observations demonstrate that the two-layered epithelial sheet organization is highly dynamic, and that its stability is maintained by strong interactions between the two layers in normal hydra. It is suggested that this dynamic nature of the hydra tissue, particularly the high plasticity of the endodermal epithelial sheet organization, may be an important element for the high regenerative capacity of this organism.


Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 537-553
Author(s):  
M.A. Wilson ◽  
J.S. Taylor ◽  
R.M. Gaze

The structure of the optic chiasma in Xenopus tadpoles has been investigated by light and electron microscopy. Where the optic nerve approaches the chiasma, a tongue of cells protrudes from the periventricular cell mass into the dorsal part of the nerve. Glial processes from this tongue of cells ensheath fascicles of optic axons as they enter the brain. Coincident with this partitioning, the annular arrangement of axons in the optic nerve changes to the laminar organization of the optic tract. Beyond the site of this rearrangement, all newly growing axons accumulate in the ventral-most part of the nerve and pass into the region between the periventricular cells and pia which we have called the ‘bridge’. This region is characterized by a loose meshwork of glial cell processes, intercellular spaces and the presence of both optic and nonoptic axons. In the bridge, putative growth cones of retinal ganglion cell axons are found in the intercellular spaces in contact with both the glia and with other axons. The newly growing axons from each eye cross in the bridge at the midline and pass into the superficial layers of the contralateral optic tracts. As the system continues to grow, previous generations of axon, which initially crossed in the existing bridge, are displaced dorsally and caudally, forming the deeper layers of the chiasma. At their point of crossing in the deeper layers, these fascicles of axons from each eye interweave in an intimate fashion. There is no glial segregation of the older axons as they interweave within the chiasma.


1967 ◽  
Vol 2 (4) ◽  
pp. 587-591
Author(s):  
J. T. FINCH ◽  
A. KLUG ◽  
M.V. NERMUT

Electron micrographs of negatively stained preparations of cell walls of Bacillus polymyxa have been investigated by optical diffraction and optical filtering techniques. Images of single layers of the cell wall, from which the ‘noise’ has been filtered optically, show hollow, square-shaped morphological units arranged on a square lattice of side 100 Å. Single-layer images showing the same pattern have been filtered from moiré patterns arising from two overlapping single layers. The morphological units are composed of four smaller subunits. The optical diffraction patterns from regions of two overlapping layers show extra reflexions which are attributed to multiple electron scattering.


2015 ◽  
Vol 14 (3) ◽  
pp. 10152-10164 ◽  
Author(s):  
F. Gharaghani ◽  
F. Rafiei ◽  
N. Mirakhorli ◽  
E. Ebrahimie

Sign in / Sign up

Export Citation Format

Share Document